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Résumé

Cette thèse est consacrée à la modélisation, à l’analyse mathématique et à l’analyse numérique
d’un système d’équations aux dérivées partielles décrivant l’évolution d’une suspension de par-
ticules neutres dans un fluide ambiant, souvent désignée sous le nom de spray. La phase
dispersée est modélisée par les équations de la théorie cinétique, tandis que la phase continue
est décrite par les équations de la mécanique des fluides. Nous nous concentrons en particulier
sur le cas des sprays dits épais.

Le Chapitre 2 est consacré au problème de la construction de solutions pour le système
des sprays épais. Nous introduisons un nouveau système dans lequel les termes singuliers sont
régularisés et nous démontrons l’existence et l’unicité de solutions avec une régularité de type
Sobolev, localement en temps.

Le Chapitre 3 explore l’analogie entre le système des sprays épais et le système de Vlasov-
Poisson décrivant un plasma électrostatique. Nous montrons qu’en l’absence de friction, le
système des sprays épais présente une propriété d’amortissement linéaire de l’énergie acoustique,
analogue à l’amortissement de Landau bien connu en physique des plasmas. Cet effet est illustré
par des résultats numériques.

Le Chapitre 4 est consacré à la simulation numérique du système des sprays épais. Nous
proposons une approche combinant des méthodes existantes : une méthode semi-Lagrangienne
pour la phase dispersée, couplée à une méthode de type Volume Fini pour la phase continue.
Nous abordons également le problème de la limite de packing et introduisons deux méthodes
permettant de conserver cette limite au niveau discret. Enfin, nous présentons des résultats
numériques.
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Summary

This thesis is dedicated to the modeling, mathematical analysis, and numerical analysis of a
partial differential equation system describing the evolution of a suspension of neutral particles
in a surrounding fluid, often referred to as a spray. The dispersed phase is modeled by the
equations of kinetic theory, while the continuous phase is described by the equations of fluid
mechanics. We focus particularly on the case of so-called thick sprays.

Chapter 2 is devoted to the problem of constructing solutions for the thick spray system.
We introduce a new system in which singular terms are regularized, and we prove the existence
and uniqueness of solutions with Sobolev regularity, locally in time.

Chapter 3 explores the analogy between the thick spray system and the Vlasov-Poisson
system describing an electrostatic plasma. We demonstrate that, in the absence of friction,
the thick spray system exhibits a property of linear damping of acoustic energy, analogous to
Landau damping, which is well known in plasma physics. This effect is illustrated by numerical
results.

Chapter 4 is dedicated to the numerical simulation of the thick spray system. We present
an approach that combines existing methods: a semi-Lagrangian method for the dispersed
phase, coupled with a finite volume method for the continuous phase. We also address the
packing limit issue and introduce two methods to preserve this packing limit at the discrete
level. Finally, we present numerical results.
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Chapter 1 : Introduction

This introductory chapter introduces the main system of partial differential equations stud-
ied in this thesis. We start by defining the concept of a spray, after which we present an
overview of the content covered in each chapter.

1.1 Introduction to spray models
This thesis is dedicated to the modelisation and to the mathematical and numerical study of
thick sprays. The term spray (or aerosol) refers to the suspension of small particles (like dust
specks or small droplets) inside a carrying fluid. This description while quite general, encom-
passes an important number of physical phenomena at different scales. This includes but is not
limited to: aerosols for medical use [24, 25], combustion mechanism in engines [5], aerosols in
the atmosphere [90], or the modelling of gas giants and exoplanets in astrophysics [66].

Being fundamentally a multiphase flow, there exists a quite large variety of possible math-
ematical description of a spray [45]:

• Microscopic level. A first possibility is to consider each of the particles as dispersed
fluid bubbles, where the dynamics in the interior and in the exterior (that is, the dynamics
of the carrying fluid) of each bubble is described by a system of Navier Stokes equations.
The problem is then not only to describe the position and the velocity of the droplets,
but also to describe the free boundary of the droplets. As such, this kind of modelisation
is very costly to simulate and only a small number of particles can be considered [109].

• Macroscopic level. Another possibility is to instead consider the spray as a two-phase
fluids problem (sometimes called "Eulerian-Eulerian"), and to describe the particles and
the fluid with two coupled Euler or Navier-Stokes equations. In this approach the interface
between the two fluids has disappeared because at the scale of the fluid it is microscopic,
and the two fluids are described by their respective volume fractions. This approach is less
costly from the numerical point of view, but its numerical discretization remains a difficult
problem because such models usually contain nonconservative products. Moreover this
kind of model usually leads to ill-posedness due to of a lack of hyperbolicity [64,67,120].

In this thesis, we consider a description that lies on the interface between these two, that
is, at the mesoscopic level. While the fluid is described by macroscopic quantities governed
by fluid mechanic equations, the particles are described from a statistical point of view, where
we use the kinetic theory. Such a way of modelling a spray has been introduced by Williams
in [118], and are sometimes called "Eulerian-Lagrangian" or "gas-particles" models.

1.1.1 Kinetic theory
The purpose of the kinetic theory is the modelling of a large number of particles. It was
originally introduced by Maxwell [95] to describe the behavior of an ideal gas [31, 32, 65, 115].
Instead of describing each particle with a system of ordinary differential equations, the kinetic
theory aims to give a description of the collective motion of a cloud of particles. From a
mathematical perspective, the main object of the kinetic theory is a nonnegative distribution
function f := f(t,x,v) on a phase space. Here, x is the position of the particles (living in a
space domain Ω ⊂ Rd) and v ∈ Rd represents their velocity. For any t (on a time interval

2



1.1. Introduction to spray models

[0,T ], T > 0 or [0, + ∞)) the quantity f(t,x,v)dxdv is the number of particles in an element
volume dxdv. It should be noted that pointwise values of f are actually meaningless from a
physical point of view (it is not a measurable quantity). A physicist would be interested in
integrals of the form

∫
f(t,·, v)φ(v) dv. For instance, the spatial density, average velocity and

the average kinetic energy of the particles are expressed as

ϱf (t,x) =
∫

R3
f(t,x, v) dv

ϱfuf (t,x) =
∫

R3
vf(t,x, v) dv

Ef (t,x) =
∫

R3

|v|2

2 f(t,x, v) dv

Hereafter, we present a hierarchy of kinetic models, increasing in complexity.

Free transport equation. The first and simplest example of kinetic equation is the free
transport equation

∂tf + v · ∇xf = 0. (1.1)

This equation describes the free streaming of particles moving in a straigh line. It is a linear
transport equation and as such it can be explicitly solved by the method of characteristics. By
denoting f0 the initial condition, it writes

f(t,x,v) = f0(x − vt,v).

Linear Vlasov equation. If we consider particles which are subject to an external force (e.g.
an electromagnetic field, or the forces induced by the flow of an ambient fluid), the distribution
function obeys the following equation

∂tf + v · ∇xf + ∇v · (Γf) = 0. (1.2)

where Γ is an external force field which does not depend on f . Again, this equation is solved
by the characteristics method

f(t,x,v) = f0 (X(0; t,x,v), V(0; t,x,v)) ,

where (X, V) are solutions of the following system of ordinary differential equation
d
ds

X(s; t,x, v) = V(s; x,v)
d
ds

V(s; t,x, v) = Γ(t, X(s; t,x, v), V(s; t,x, v)),
(1.3)

and
(X(t; t,x, v), V(t; t,x, v)) = (x,v).

3



Chapter 1 : Introduction

Boltzmann equation. In some applications, one needs to take into account the interactions
between particles.

∂tf + v · ∇xf = Q(f,f). (1.4)

Typically, the operator Q(f,f) represents the (binary) collision between particles. We refer for
the reader interested in such equations to Villani’s review [115].

Vlasov-Poisson equations One of the simplest nonlinear kinetic equations, and one of the
simplest models for plasmas and the dynamics of galaxies, is the Vlasov-Poisson equations [9,
77,80,116]: 

∂tf + v · ∇xf + E · ∇vf = 0
E = −∇xϕ

−∆ϕ =
∫

R3
f(t,x,v) dv.

(1.5)

Here, there is no external force, the force acting on the particles is the self-induced electric field
Γ(t,x,v) = E(t,x). This system couples a Vlasov equation with a Poisson equation. Notice
that E does not depend on v and therefore is placed outside the ∇v operator.

In contrast with the Boltzmann equation (1.4), this equation is time-reversible. However,
it surprisingly displays an irreversible behavior, the so-called Landau damping [81]. In his pio-
neering article [81], Landau studied the equation (1.5) linearized around a Gaussian equilibrium
for the particles, and concluded that small perturbations of the electric field must decay at an
exponential rate. We shall return to this in Chapter 3.

Vlasov-Maxwell equations The previously introduced Vlasov-Poisson equations are an
approximation of the more complete and complex Vlasov-Maxwell equations

∂tf + v · ∇xf +
(

E + 1
c
v̂ × B

)
· ∇vf = 0

1
c
∂tB + curl E = 0

−1
c
∂tE + curl B = 1

c

∫
R3

f(t,x, v)v̂ dv

div E =
∫

R3
f(t,x, v) dv

div B = 0

(1.6)

with v̂ = v√
1+|v|2/c2

. Despite the fact that Γ depends explicitly on v, it is divergence-free in the
velocity variable ∇v · Γ = 0 and the force can be put inside or outside the ∇v operator. We
recover the Vlasov-Poisson equations (1.5) when c → +∞ (which translates that the velocities
of the particles are negligible compared to the speed of light, v ≪ c).

1.1.2 Fluid mechanics
Throughout this work, we will only consider compressible, inviscid fluids. The fluid will be
described by macroscopic quantities such as its density ϱ(t,x) ∈ R+, its velocity u(t,x) ∈ Rd

4



1.1. Introduction to spray models

and its internal energy e(t,x) ∈ R+. The governing equations of the fluid are obtained from
the conservation principles of the mass, momentum and total energy. Without external forces,
the conservation laws lead to the so-called Euler system [68,82,85,86]

∂tϱ + ∇x · (ϱu) = 0
∂t(ϱu) + ∇x(ϱu ⊗ u) + ∇xp = 0
∂t(ϱe) + ∇x · (ϱeu) + p∇x · u = 0.

(1.7)

This set of equations describes a compressible, inviscid fluid, in contrast with the Navier-Stokes
equations which take into account viscosity. The pressure p : R+ → R here is not an unknown
quantity, it is a given function obtained from thermodynamical considerations. For instance,
for a perfect gas, one has p(ρ,e) = (γ − 1)ρe where γ > 1 is the adiabatic index. Another
important example is the case of a barotropic pressure law p(ρ) = aργ with a > 0 and γ > 1.
In this case, the energy equation becomes redundant and one only needs the first two equations
to obtain a complete system.

1.1.3 Model for spray
We now turn to the main system under consideration in this thesis. We will present a thin
spray model, before turning to the main topic of this thesis, the thick spray model.

We consider only spherical, monodisperse particles, which means that they all have the same
radius rp > 0 and density ρp > 0. We denote m⋆ = 4

3πrpρp the mass of a given particle. We
refer to [2,55,64,117] for recent works on polydisperse sprays. We also do not consider thermal
effects for the particles and the distribution function f is only dependent on time, position and
velocity, f := f(t,x, v).

In this manuscript, we adopt the classification system proposed by O’Rourke [97], which is
based on the volume fraction of the dispersed phase

1 − α(t,x) = m⋆

ρp

∫
R3

f(t,x,v) dv,

where α(t,x) represents the fluid volume fraction. The classification is as follows:

• 1−α(t,x) ≪ 10−3: Very Thin Spray. In this case, the volume occupied by the particles
is so minimal that they do not influence the fluid dynamics. The particles’ behavior is
entirely dictated by the fluid, with no feedback on the fluid dynamics.

• 1 − α(t,x) ≪ 1: Thin Spray. Here, the retroaction of the forces exerted by the fluid on
the particles must be considered.

• 1 − α(t,x) ∼ 0.1: Thick Spray. In this regime, the volume occupied by the particles is
significant compared to that of the fluid, necessitating an explicit inclusion of the volume
fraction in the fluid equations.

1.1.3.1 Thin spray model

In the thin spray regime, the fluid volume fraction α is nearly equal to 1, indicating that the
total volume occupied by the particles is negligible compared to that of the fluid. Consequently,
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the volume fraction α does not explicitly appear in the governing equations. A typical model
that describes the evolution of a thin spray is often referred to as a Vlasov-Euler system (or
Vlasov-Navier-Stokes for viscous fluids) and is expressed as follows [11,12,91,92]:



∂tρ + ∇x · (ρu) = 0

∂t(ρu) + ∇x · (ρu ⊗ u) + ∇xp = −
∫∫

m⋆fΓ dvdep

∂t(ρE) + ∇x ·
(

ρ

(
E + p

ρ

))
= −

∫
m⋆f (Γ · v + ϕ) dv

∂tf + v · ∇xf + ∇v · (Γf) + ∂ep(fϕ) = 0

p = P1

(
ρ, E − |u|2

2

)
m⋆Γ = D⋆(u − v)
m⋆ϕ = C(Tg − Tp)

Tg = T1

(
ρ, E − |u|2

2

)

Tp = T2

(
ρ, E − |u|2

2

)
.

(1.8)

In this model, m⋆ represents the mass of the particles, while Tg and Tp denote the tempera-
tures of the gas and particles, respectively. The first three equations of this system represent
conservation equations for the gas. The fourth equation is the Vlasov equation describing the
dynamics of the particles. The interaction between the particles and the fluid is characterized
by a drag force, along with heat exchange between the two phases. Here, Γ represents the drag
force, with the drag coefficient D⋆ determined semi-empirically. The functions P1, T1, and T2
are derived from physical laws and vary according to different applications.

This system and its variants have been extensively studied from both mathematical and
numerical perspectives; see [11,12,24,25,54,91].

1.1.3.2 Thick spray model

In this section, we are interested in the thick spray regime. In this case, the volume fraction
of the particles is no longer negligible, and the quantity α appears explicitly in the system. It
typically concerns flows where the volume fraction is α ≈ 0.8 or α ≈ 0.9. In this thesis, such
models will be refered to as thick sprays or thick spray models.
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1.1. Introduction to spray models

A typical thick spray model reads [23,49,52,53,97]

∂t(αϱ) + ∇x · (αϱu) = 0

∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp − νAu = −
∫

R3
m⋆Γf dv

∂t(αϱe) + ∇x · (αϱeu) + p(∂tα + ∇x · (αu)) =
∫

R3

(
m⋆Γ + m⋆

ρp

∇xp

)
· (v − u) dv

∂tf + v · ∇xf + ∇v · (Γf) = κQ(f,f)

α = 1 − m⋆

ρp

∫
R3

f dv.

(1.9)

This system consist of a coupling between a modified compressible Euler system and a Vlasov-
Boltzmann equation. The first equation is the conservation of the mass of the fluid. The second
equation is the balance law for the momentum of the fluid. The operator Au is a generic el-
liptic operator(for instance Au = ∆u) which models diffusion processes in the gas. Notice the
retroaction of the force applied on the particles by the gas on the right-hand-side, inducing
a transfert of momentum form the particle phase to the fluid phase. The third equation is
the balance law for the internal energy of the fluid. The integral on the right-hand-side corre-
sponds to the transfer of energy from the particles to the fluid. Finally, the fourth equation is a
Vlasov-Boltzmann equation that governs the evolution of the particle phase space distribution
f . The force field Γ models the forces applied on the particles by the fluid and external forces
like gravity. The right-hand-side Q(f,f) models the interactions between the particles, such as
collisions, coalescence (two particles merging together), fragmentation (a particle dividing itself
into two or more particles). The constant κ is positive real number that is sometimes refered
to as the Knudsen number. Finally, the volume fraction of the fluid α(t,x) appears in the fluid
part of the system.

Let us detail the force field Γ that couples the particle phase and the fluid phase. In the
absence of external forces, the force is usually [5, 45,53,97] composed of two terms

m⋆Γ = Fdrag + Fpress.

• The drag force Fdrag is due the resistance of the fluid to the motion of the particles. One
of the more common expressions for this quantity that can be found in the litterature [12,
97,104] is a nonlinear function of u(t,x) − v that reads

Fdrag(t,x) = 1
2πr2

pϱ(t,x)Cd|u(t,x) − v|(u(t,x) − v),

where Cd is an adimensionnal drag coefficient whose value is given in a semi-empirical
way. Some formulae can be found in the litterature. For instance, in the KIVA-II code
of Los Alamos [5], the formula used writes

Cd = 24
Re

(
1 + 1

6Re2/3
)

where Re = 2ϱ|u−v|rp

µ
is the particule Reynolds number and µ is the dynamic viscosity

of the fluid. When the Reynolds number is not too large (see [36, 48]), a reasonable
approximation is

Cd = 24
Re ,

7



Chapter 1 : Introduction

so the drag force writes
Fdrag = Cµ

r2
pρp

(u − v).

A common simplification (see again [36, 48]) is to consider a constant viscosity, so the
drag force writes

Fdrag = D⋆(u − v),
where D⋆ is a given constant drag coefficient. This is the formula that we will consider
in this thesis. The drag force is a force that is common in most fluid-kinetic models and
is often the driving mechanism of the dynamics of the system.

• An additional force arising from Archimedes’ principle, specific to thick sprays within
fluid-kinetic models, appears in the force field:

Fpress = −m⋆

ρp

∇xp(t, x).

Since the total volume occupied by the particles is no longer negligible, this force be-
comes comparable to the drag force. In two-fluid models, it is common to consider a
system where the two phases share a common pressure. This same concept underlies the
emergence of this term, and it allows to formally recover a two-fluid model from (1.9), by
considering the limit κ → +∞ (see [46]).

Finally, in this thesis, we consider a force field Γ that writes (in a system of units where ρp = 1):

m⋆Γ(t,x, v) = −m⋆∇xp(t,x) − D⋆(v − u(t,x)).

The retroaction of this force is present in the momentum equation of the fluid in (1.9). In our
case, it writes

−m⋆

∫
R3

Γf dv = m⋆∇xp
∫

R3
f dv + D⋆

∫
R3

(v − u)f dv.

Notice that by substracting the first term of the right-hand-side from the momentum equation
yields

∂t(αϱu) + ∇x · (αϱu ⊗ u) + α∇xp − νAu = D⋆

∫
R3

(v − u)f dv. (1.10)

The right hand side is the retroaction of the drag force on the fluid, sometimes called the
Brinkman force.

In this manuscript, we consider several simplifications:

• First, we neglect fragmentation and coalescence in the operator Q(f,f). According to
Dukowicz [49], this implies that the particles are sufficiently far apart, allowing us to
disregard the collisions between them. Ultimately, this leads to setting κ = 0. It is worth
noting that, while it seems that in numerous test cases, the presence of a collision operator
appears to have minimal impact on the macroscopic physical outputs of a numerical
simulation (as observed by Benjelloun, Desvillettes, Ghidaglia and Nielsen [17]), this
term remains important for linking the fluid-kinetic system (1.9) to the corresponding
bifluid model [46].
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1.1. Introduction to spray models

• We neglect any diffusion process in the system and we set ν = 0. This is a simplification
that is commonly found in the physics literature due to the industrial context in which
this kind of systems is used, such as the injection of liquid sprays into an ambient gas
(see [49, 97]). For an analysis of the system (1.9) with diffusion, we refer to the work of
Ertzbischoff and Han-Kwan [53], as well as the PhD thesis of Ertzbischoff [52].

• In this work, we primarily focus on the barotropic case where the pressure depends solely
on the density of the fluid p := p(ϱ). This implies that the equation for the internal
energy is not needed and can be discarded from the system. Specifically, we assume that
p(ϱ) = ϱγ, where γ > 1 is the adiabatic index.

To conclude this section, let us write the final thick spray model that is used in most of this
work 

∂t(αϱ) + ∇x · (αϱu) = 0

∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp(ϱ) = −m⋆

∫
R3

Γf dv

∂tf + v · ∇xf + ∇v · (Γf) = 0

α = 1 − m⋆

∫
R3

f dv

m⋆Γ = −m⋆∇xp(ϱ) − D⋆(v − u).

(1.11)

1.1.3.3 Preliminary remarks

Like for most systems describing complex flows, we verify that fundamental conservation prop-
erties hold. First, the mass of each phase is preserved since one has

∂t(αϱ) + ∇x · (αϱu) = 0, ∂tf + ∇x · (vf) + ∇v · (Γf) = 0.

By multiplying the Vlasov equation by m⋆v and integrating with respect to v, one obtains the
momentum equations for the dispersed phase.

∂t

(
m⋆

∫
R3

vf dv
)

+ ∇x ·
(∫

R3
v ⊗ vf dv

)
= m⋆

∫
R3

Γf dv.

Then, by adding this equation to the balance equation for the momentum of the fluid, one
obtains that the total momentum is preserved

∂t

(
αϱu + m⋆

∫
R3

fv dv
)

+ ∇x ·
(

αϱu ⊗ u + m⋆

∫
R3

fv ⊗ v dv
)

+ ∇xp = 0.

Multiplying by u the momentum balance law of the fluid, one obtains the balance law for the
kinetic energy of the fluid

∂t

(
αϱ

|u|2

2

)
+ ∇x ·

(
αϱ

|u|2

2 u

)
+ αu · ∇xp = D⋆u ·

∫
R3

(v − u)f dv. (1.12)

Then, the balance law for the kinetic energy of the particles writes

∂t

(
m⋆

∫
R3

|v|2

2 f dv

)
+ ∇x ·

(
m⋆

∫
R3

|v|2

2 vf dv

)
=
∫

R3
m⋆v · Γf dv

9



Chapter 1 : Introduction

Then, one sees that the total energy is preserved

∂t

(
αϱE + m⋆

∫
R3

f
|v|2

2 dv

)
+ ∇x ·

(
αϱuE + m⋆

∫
R3

fv
|v|2

2 dv + αup + m⋆p
∫

R3
fv dv

)
= 0.

where E = e + |u|2
2 is the total energy of the fluid.

1.2 Construction of solutions
In this section we introduce the content of the Chapter 2. It is dedicated to the local in time
well-posedness for strong solutions of a modified thick spray model, where the terms specific to
thick spray are regularized by mean of a convolution with a kernel of bounded variation.

1.2.1 Mathematical difficulties for thick spray
The mathematical study of (1.9) is still in its very early stages. For instance, no local Cauchy
theory has been established for this system. In the case ν > 0, meaning diffusion is reintroduced
into the fluid phase, a significant advancement in the understanding of thick spray equations
has been made by Ertzbichoff and Han-Kwan in [53], where they proved the existence and
uniqueness of local-in-time strong solutions with high Sobolev regularity. As explained in [53],
standard energy estimates seem to result in a loss of several derivatives, which make this system
a singular coupling between the kinetic phase and the fluid phase. For the case without viscos-
ity ν = 0, Baranger and Desvillettes [12] conjectured that the system (1.11) might be ill-posed,
by analogy with the corresponding two-fluid model [46]. Additionally, constructing global weak
solutions for (1.11) seems to be a difficult problem. Standard frameworks [3] require that the
gradient of the pressure ∇xp(t) be at least in W 1,1

x or in BVx, which is unlikely. As a nonlinear
system of conservation law, the fluid part of (1.9) is expected to generate discontinuous solu-
tions (shock waves) in finite time. In particular, p(t) is expected to belong at most to BVx in
the presence of shock waves in the fluid.

There seems to be a need for a system that accurately describes thick sprays while offering
improved mathematical properties. To meet this need, we propose a new system that is locally
well-posed in time and preserves key conservation properties. The main idea is to reintroduce
the radius of the particle in the system and to regularize the terms in (1.11) which are specific
to thick sprays.

1.2.2 Heuristics for a regularization of the thick spray model
Consider a single spherical particle with radius rp > 0 located at the coordinate x⋆. In the
surrounding gas characterized by a pressure field p. If we neglect the friction, the gas exerts a
force on the particle given by

F = −
∫

S2(x⋆,rp)
pn dx.

Assuming that the pressure is differentiable in the particle, one obtains using Stokes’s theorem

F = −
∫

S3(x⋆,rp)
∇xp(x) dx = −m⋆

∫
R3

w(x − x⋆)∇xp(x) dx = m⋆(w ⋆ ∇xp)(x⋆),
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1.2. Construction of solutions

where the convolution kernel is
w(y) = 1

m⋆

1|y|<r(y).

Using the notation ⟨·⟩ = w ⋆ · for the convolution operator, the force is rewritten as

m⋆Γ = −m⋆⟨∇xp⟩.

It seems then to be natural to replace the term ∇xp·∇vf in the Vlasov equation by ⟨∇xp⟩·∇vf ,
and obtain

∂tf + v · ∇xf − ⟨∇xp⟩ · ∇vf = 0. (1.13)

However, it seems that if we only modify this term, we lose the conservation of total momentum
and total energy. Indeed, because of this modificaiton, the total momentum equation is also
modified and one has

∂t

∫
R3

(
αϱu + m⋆

∫
R3

fv dv
)

dx = m⋆

∫
R3

(
∇xp

∫
R3

f dv − ⟨∇xp⟩
∫

R3
f dv

)
dx. (1.14)

The right hand side is a priori non zero, so the total momentum is not conserved. It appears
then that the regularisation of the pressure in the Vlasov equation requires that we also modify
some terms in the fluid equations to recover conservation of important physical quantities.

At this point, there are multiple choices that lead to the conservation of thoses quantities.

For instance, a possible choice to recover the conservation of total momentum, is to modify the
right hand side of the second equation of (1.11) and regularise the gradient of the pressure ∇xp
on the right hand side

∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp = m⋆⟨∇xp⟩
∫

R3
f dv + D⋆

∫
R3

(v − u)f dv,

and we obtain the conservation of the total momentum. However, because we have

⟨∇xp⟩
∫

R3
f dv = (1 − α)⟨∇xp⟩

we are then not able to write the balance law like in (1.10), which implies that we lose the
relation (1.12) and we lose the total conservation of energy.

A simpler choice, that leads to the conservation of both the total momentum and the total
energy, is to regularise the volume fraction α and to writes

α = 1 − m⋆

∫
R3

⟨f⟩ dv.

By doing so, one recovers immediatly the relations of the Subsection 1.1.3.3. For the sake of
simplicity, this is the choice that we have made. In retrospective, it is also the choice that seems
the wisest consedering the loss of regularity of the system (1.11), which is due to the presence
of the volume fraction term in the fluid equations, and to the gradient of the pressure in the
Vlasov equation.
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r

p−p+

Fig. 1.1: Shock wave passing through a particle.

The last step is to reintroduce the friction in the system, which is done without modification
as those terms do not imply any added difficulty.

In the end, we propose the following thick spray model with regularisation

∂t(αϱ) + ∇x · (αϱu) = 0

∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp = m⋆∇xp
∫

R3
⟨f⟩ dv + D⋆

∫
R3

(v − u)f dv

∂tf + v · ∇xf + ∇v · (Γf) = 0

α = 1 − m⋆

∫
R3

⟨f⟩ dv

m⋆Γ = −m⋆⟨∇xp⟩ − D⋆(v − u).

(1.15)

We will show that the presence of this convolution, with a kernel ω ∈ BV is sufficient to obtain
the local-in-time well posedness of smooth solutions. Extension to the full Euler system is
straightforward as it does not require any modification.

1.2.3 Local in time well-posedness for an averaged thick spray model.
The main result of Chapter 2 is the local in time well-posedness for the regularized thick spray
model (1.15) in the class of Sobolev initial data.

Theorem 1.2.1. Let Ω = (0,+∞)×R3, s ∈ N such that s > 3/2+1 and Ω1, Ω2 two open sets
of Ω such that Ω1 ⊂ Ω2 and Ω1 and Ω2 are relatively compact in Ω. Let (ϱ0, ϱ0u0) : R3 → Ω1
satisfying ϱ0 − 1 ∈ Hs(R3) and u0 ∈ Hs(R3). Let f0 : R3 × R3 → R+ be a function in
C 1

c (R3 × R3) ∩ Hs(R3 × R3) satisfying

∥f0∥L∞ <
1

24∥w∥L1VM(0)3 .
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with VM(0) = sup
(x,v)∈R3×R3,f0(x,v)>0

|v|.

Then, one can find T ∈ (0,1) such that there exists a solution (ϱ, ϱu, f) of the system (1.15)
belonging to C 1([0,T ] × R3, Ω2) × C 1

c ([0,T ] × R3 × R3, R+). Moreover, this solution is unique
and it satisfies

C ≤ α(t,x) ≤ 1, t ∈ [0,T ], x ∈ R3.

The initial bound on f0, which is propagated for small time, ensures that the volume fraction
stays positive. The strategy of the proof is to follow the ideas of Baranger, Desvillettes [12]
and Mathiaud [92] and to invoke the general theory of symmetrisable hyperbolic systems of
conservation laws(see the book of Majda [87]), by treating the terms that lose derivatives in the
original system (1.9) as terms of order 0. Let us notice that the time of existence in Theorem
2.1.5 depends on the radius of the particles rp > 0 and it is not possible to use this strategy to
construct classical solutions for the original system (1.9) by taking the limit rp → 0.

1.2.3.1 Strategy of the proof.

Let us detail briefly the strategy and main steps of the proof of Theorem 2.1.5. First, it is
sufficient to only consider the system without friction. After normalizing the constants to 1, it
writes 

∂t(αϱ) + ∇x · (αϱu) = 0

∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp = ∇xp
∫

R3
⟨f⟩ dv

∂tf + v · ∇xf − ⟨∇xp⟩ · ∇vf = 0

α = 1 −
∫

R3
⟨f⟩ dv

p = p(ϱ) = ϱγ.

(1.16)

The idea is then to adapt the strategy developed by Baranger and Desvillettes [12] (see also
the work of Mathiaud [92]) based on the theory of local-in-time solutions for a symmetrisable
hyperbolic system of conservation laws.

We explain now the main steps of this strategy.

The principle of the method is to combine the theory of hyperbolic symmetrisable system
of conservation laws (see for instance the book of Majda [87]) for the fluid part, and the char-
acteristics method with the control of the support of the phase space distribution f for the
Vlasov equation [102].

The first step of such strategies is to symmetrise the fluid part of the system. However,
because of the presence of the volume fraction α, The fluid part of (1.16) is not trivial to
symmetrize. The idea is to expand the derivative on the left-hand-side of the fluid part, and to
treat the terms containing derivatives of α as source term. Let us remark immediatly that such
a strategy cannot work for the original system (1.9) because of the loss of regularity mentioned
earlier. However, the convolution kernel, despite being only in BV, allows us to compensate
the lost derivatives and to construct local in time classical solutions for (1.16). We want to
emphasize that this gives a time of existence that depends of the radius of the particles rp > 0,
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and this does not allow us to construct solutions to (1.9) by taking the limit rp → 0 because the
bounds we obtain during the proof degenerate. We also note that using the same strategy for
the thick spray model without regularisation (1.11) will not work because of the mentionned
loss of regularity.

1.3 Analog of Landau damping in thick sprays
In this section, we present the results of Chapter 3. In 1946, Landau shocked the physics
community by predicting that collisionless electrostatic plasmas can exhibit wave damping.
Landau formally solved the linearized equations by means of Fourier and Laplace transforms,
and after a study of singularities in the complex planes, concluded that the electric field must
decay exponentially fast (see the original paper of Landau [81]. Today, Landau damping is
considered as a cornerstone of plasma physics [26, 107, 113]. The mathematically rigourous
theory of the linear Landau damping was pioneered by Backus [8] and Penrose [99]. It was
latter analyzed in depth by many mathematicians [40,89]. We refer to the work of Mouhot and
Villani [96] and the references therein for a review of Landau damping.

In Chapter 3, we show that the structure of the linearized thick spray model around an
homogeneous (in x) "one bump" equilibrium is reminiscent of the structure of the linearized
(around a suitable equilibrium) of the Vlasov-Poisson equations (1.5). In particular, we show
that the linearized equations exhibits an analog of Linear Landau damping. This effect will be
illustrated by numerical simulations. Nonlinear Landau damping [16, 96], however, is beyond
the scope of this work and will not be addressed.

1.3.1 Linearization of thick spray equations
We explain how we linearize the thick spray model (1.11), following [27]. The first is to deter-
mine an equilibrium of the system. We start from the initial condition

ϱ(0,x) = ϱ0,

u(0,x) = 0,

f(0,x,v) = f0(t,v) := n0F
(

|v|2
2

)
.

(1.17)

Where ϱ0 > 0, n0 > 0, d⋆ = D⋆/m⋆ and F : R+ → R+ is a smooth strictly decreasing
function F ′ < 0. The case of a Maxwellian corresponds to F (w) = e−w. Then, a solution of the
system (1.11) writes, for t > 0

ϱ(t,x) = ϱ0,

u(t,x) = 0,

f(t,x,v) = e3d⋆tn0F
(

e2d⋆t|v|2
2

)
.

(1.18)

We then linearize the thick spray model (1.11) around the equilibrium (1.18)

ϱ(t,x) = ϱ0 + εϱ1(t,x) + O(ε2),
u(t,x) = εu1(t,x) + O(ε2),

f(t,x,v) = f0(t,v) + ε
√

f0(t,v)f1(t,x,v) + O(ε2).
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1.3. Analog of Landau damping in thick sprays

Notice the scaling by
√

f0(t,v), it is not necessary for the linearization, however it will be useful
after. We also introduce the linearization of the volume fraction α(t,x) = α0 + εα1(t,x) + O(ε).
The linearization of the fluid mass equation writes

α0∂tϱ1 + ϱ0∂tα1 + α0ϱ0∇x · u1 = 0.

It is then natural to introduce the linearized specific volume τ1 = −ϱ1/ϱ2
0. Then the linearization

of the fluid mass equation writes

α0ϱ0∂tτ1 = α0∇x · u1 + ∂tα1

= α0∇x · u1 − m⋆∂t

(∫
R3

√
f0e

d⋆tf1 dv
)

= α0∇x · u1 + m⋆∇x ·
(∫

R3

√
f0e

d⋆tf1v dv
)

.

Where we used the linearization of the mass conservation of the dispersed phase

∂t

(
m⋆

∫
R3

√
f0e

d⋆tf1 dv
)

+ ∇x ·
(

m⋆

∫
R3

√
f0e

d⋆tf1v dv
)

= 0.

Defining the speed of sound c0 =
√

p′(ϱ0), one has

p(ϱ) = p(ϱ0 + εϱ1 + O(ε2)) = p(ϱ0) + εϱ1p
′(ϱ0) + O(ε2)

and ϱ1p
′(ϱ0) = −ϱ2

0c
2
0τ1 and the linearization of the momentum equation can be written under

the form

α0ϱ0∂tu1 = α0ϱ
2
0c

2
0∇xτ1 + m⋆d⋆

∫
R3

v
√

f0e
d⋆tf1 dv − m⋆d⋆u1

∫
R3

f0 dv.

We now turn to the linearisation of the Vlasov equation. One has√
f0(t, v)ed⋆t∂tf1 + f1∂t(

√
f0(t, v)ed⋆t)+

√
f0(t, v)ed⋆tv · ∇xf1

+ ∇v ·
(

Γ0

√
f0(t, v)ed⋆tf1 + Γ1f0(t, v)

)
= 0,

where Γ0 = −d⋆v and Γ1 = −∇x(p′(ϱ0)ϱ1) + d⋆u1 = ϱ2
0c

2
0∇τ1 + d⋆u1. So

∂tf1 + v · ∇xf1 + (
√

f0(t, v)ed⋆t)−1
(
ϱ2

0c
2
0∇τ1 · ∇vf0

)
= (

√
f0(t, v)ed⋆t)−1

[
−f1∂t(

√
f0(t, v)ed⋆t) − ∇v ·

(
Γ0

√
f0(t, v)ed⋆tf1

)
− d⋆u1 · ∇vf0(t, v)

]
.

One has the following formula for f0

∇vf0(t, |v|) = −ve2d⋆t

(
−F ′

F

)(
e2d⋆t|v|2

2

)
f0(t, v),

which yields the identity

(
√

f0(t, v)ed⋆t)−1∇vf0(t, v) = −v
√

f0(t, v)ed⋆t

(
−F ′

F

)(
e2d⋆t|v|2

2

)
. (1.19)
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One gets

∂tf1 + v · ∇xf1 − ϱ2
0c

2
0

√
f0(t, v)ed⋆tv · ∇τ1

(
−F ′

F

)(
e2d⋆t|v|2

2

)

= d⋆

√
f0(t, v)ed⋆tv · u1

(
−F ′

F

)(
e2d⋆t|v|2

2

)

− (
√

f0(t, v)ed⋆t)−1
[
f1∂t(

√
f0(t, v)ed⋆t) + ∇v ·

(
Γ0

√
f0(t, v)ed⋆tf1

)]
.

The opposite of the last term in the right-hand side is

(
√

f0(t, v)ed⋆t)−1
[
f1∂t(

√
f0(t, v)ed⋆t) + ∇v ·

(
Γ0

√
f0(t, v)ed⋆tf1

) ]

= (
√

f0(t, v)ed⋆t)−1
[
∂t(
√

f0(t, v)ed⋆t) + ∇v ·
(

Γ0

√
f0(t, v)ed⋆t

) ]
f1

+ Γ0 · ∇vf1

= (
√

f0(t, v)ed⋆t)−1
[
∂t(
√

f0(t, v)ed⋆t) + ∇v ·
(

Γ0

√
f0(t, v)ed⋆t

) ]
f1

− 1
2 [∇v · Γ0] (

√
f0(t, v)ed⋆t)f1 + 1

f1
∇v ·

(1
2Γ0f

2
1

)
.

The term in front of f1 is

(
√

f0(t, v)ed⋆t)−1
[
∂t(
√

f0(t, v)ed⋆t) + ∇v ·
(

Γ0

√
f0(t, v)ed⋆t

)
− 1

2 [∇v · Γ0] (
√

f0(t, v)ed⋆t)
]

= (
√

f0(t, v))−1
[
∂t

√
f0(t, v) + Γ0 · ∇v

√
f0(t, v)

]
+
(

d⋆ + 1
2∇v · Γ0

)
= (2f0(t, v))−1 [∂tf0(t, v) + Γ0 · ∇vf0(t, v)] +

(
d⋆ + 1

2∇v · Γ0

)
= −1

2∇v · Γ0 +
(

d⋆ + 1
2∇v · Γ0

)
= d⋆.

because f0 satisfies

∂tf0(t, v) + Γ0 · ∇vf0(t, v) + f0(t, v)Γ0 = 0.

One gets

∂tf1 + v · ∇xf1 − ϱ2
0c

2
0

√
f0(t, v)ed⋆tv · ∇τ1

(
−F ′

F

)(
e2d⋆t|v|2

2

)

= d⋆

√
f0(t, v)ed⋆tv · u1

(
−F ′

F

)(
e2d⋆t|v|2

2

)
− d⋆f1 − 1

f1
∇v ·

(1
2Γ0f

2
1

)
.
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In the end, one obtains the linearized thick spray equations

α0ϱ0∂tτ1 = α0∇x · u1 + m⋆∇x ·
∫

R3

√
f0e

d⋆tf1v dv

α0ϱ0∂tu1 = α0ϱ0c
2
0∇xτ1 + m⋆d⋆

∫
R3

v
√

f0e
d⋆tf1 dv − m⋆d⋆u1

∫
R3

f0 dv

∂tf1 + v · ∇xf1 − ϱ2
0c

2
0

√
f0e

d⋆tv · ∇xτ1

(
−F ′

F

)(
e2d⋆t|v|2

2

)

= d⋆

√
f0e

d⋆tv · u1

(
−F ′

F

)(
e2d⋆t|v|2

2

)
− d⋆g1 + d⋆

g1
∇v ·

(1
2vg2

1

)
.

(1.20)

The main goal of Chapter 3 is to prove that in the case with no friction, D⋆ = 0, one has a
linear damping result in the same fashion as the Landau damping of Vlasov-Poisson equations.
Our approach is to use the framework of spectral theory [79,84].

1.3.2 Parallel between the thick spray model and Vlasov-Poisson
equations

In Chapter 2, our strategy is based on a recent study of the linear Vlasov-Ampère equation
using the point of view of abstract scattering theory. (see [43, 44]).

Consider the linearized Vlasov-Poisson equation for one species of negatively charged particle
(electrons) in a plasma. 

∂f

∂t
+ v∂xf + ∂xϕf ′

0(v) = 0,

∂2
xϕ =

∫
R3

f dv.
(1.21)

• The spectral properties of the Vlasov-Poisson equation have been studied by Degond
in [40]. The main result is that the electric potential ϕ admits an asymptotic expansion
of the form

ϕ(t,x) =
S∑

s=1
cse

λst+insx + O(ert), r < min
1≤s≤S

ℜλs.

The main tools used are the Dunford formula and an analytic continuation of the resolvent.
The λs are then no longer eigenvalues of the linearized Vlasov-Poisson operator.

• Another approach done by Després in [43, 44] is to rewrite the linearized Vlasov-Poisson
equation (1.21) as a linear Vlasov-Ampère equation. Indeed, one has the identity

∂x(∂tE −
∫

R3
fv dv) = ∂t∂xE − ∂x

∫
R3

fv dv = −∂t

∫
R3

f dv − ∂x

∫
R3

fv dv = 0

So one can write the Ampère law under the form

∂tE = 1⋆
∫

R3
fv dv

where 1⋆ = L2(T) → L2
0(T) is the projection operator

1⋆g = g −
∫

T
g(x) dx.
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Then, the linearized Vlasov-Poisson equations (1.21) are equivalent to the linearized
Vlasov-Ampère equations 

∂tf + v∂xf − Ef ′
0(v) = 0,

∂tE = 1⋆
∫

R3
fv dv

(1.22)

The main result is that the linearized operator associated to (1.22) is self-adjoint, and
a careful study of the spectrum of this operator yields linear Landau damping. This
approach has the advantage that it is capable to also deal with the inhomogeneous (in x)
case.

1.3.3 Linear damping in thick sprays
For simplicity, we present the results in 1D, but our result is true in any dimension d ∈ N∗.
Setting a null friction D⋆ = 0 and normalizing the other coefficients, the linearized equations
(1.20) write



∂tτ1 = ∂xu1 + ∂x

∫
R

√
f0f1v dv

∂tu1 = ∂xτ1

∂tf1 + v∂xf1 −
√

f0v∂xτ1

(
−F ′

F

)(
|v|2

2

)
= 0.

(1.23)

Then we rewrite the system (1.23) in the framework of spectral theory

∂tU(t) = iHU (1.24)

where U = (τ, u, f) and H is an operator formally defined by

iH =


0 ∂x ∂x

∫
R v

√
f 0(v) · dv

∂x 0 0
v
√

f 0(v)
(
−F ′

F

)
∂x 0 −v∂x

 .

Denote
L2

0(T) =
{

u ∈ L2(T),
∫

T
u dx = 0

}
,

and let X = L2
0(T) × L2

0(T) × L2
0(T × R) be equipped with the natural scalar product of L2. If

the equilibrium profile for the particles is a Maxwellian f0(v) = e−v2/2, the operator H rewrites
as a symmetric operator in X

iH =


0 ∂x ∂x

∫
R v

√
f 0(v) · dv

∂x 0 0
v
√

f 0(v)∂x 0 −v∂x

 . (1.25)

We now write the main result of Chapter 3:
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Theorem 1.3.1. If f0(v) = e−v2/2, then the operator H restricted to X := L2
0(T) × L2

0(T) ×
L2

0(T × R) with domain D [H] = {U ∈ X, HU ∈ X} is self-adjoint and one has the decom-
position

X = Xac.

As a consequence, a solution (τ(t,·),u(t,·),f(t, · ,·)) of (1.24) weakly converges in X to 0 as
t → ∞. One also has convergence of the acoustic energy ∥τ(t)∥2

L2 + ∥u(t)∥2
L2 to 0 as t → +∞.

1.3.4 Strategy of the proof
We present here the general idea of the proof of Theorem 1.3.1.

The first step is to show that the operator H restricted to X := L2
0(T) × L2

0(T) × L2
0(T × R)

with domain D [H] = {U ∈ X, HU ∈ X} is self-adjoint. At this point, one can apply the full
arsernal of scattering theory for self-adjoint operators. A general result from scattering the-
ory [14,78,84,106,119] states that a self-adjoint operator induces an orthogonal decomposition
of the Hilbert space on which it acts in terms of measure theory. The decomposition reads

X = Xac ⊕ Xsc ⊕ Xpp.

The "pure point" subspace Xpp corresponds to the subset of the spectrum made of the eigen-
values of H, and is spanned by the classical eigenvectors

Xpp = Span{φ ∈ X, Hφ = λφ for some λ ∈ R}.

The "absolutely continuous" subspace Xac corresponds to the so-called pseudo eigenvectors. A
usefull characterisation of this space that was proved by Gustafson and Johnson [71] reads

Xac =
{

φ ∈ X, ∥ (H − λ − iε) φ∥X = O
(1

ε

)}
. (1.26)

Finally the subspace Xsc corresponds to the "singular continuous part" of the spectrum. In
most operators coming from the physics, one usually expects that singular continuous part is
absent, that is Xsc = {0}.

An analysis of the spectrum of H shows that it is entirely composed of absolutely continuous
spectrum, meaning X = Xac. It is then a classical fact of scattering theory [79,84] that, denoting
eitH the semigroup associated with H, the solution U(t) = (τ(t), u(t), f(t)) = eitH(τini,uini,fini)
weakly converges to 0 in X as t → ∞. Finally, using the conservation of the quadratic norm,
one can show that τ(t) and u(t) strongly converge in 0 in L2

0 as t → ∞.

We obtain then, in the same spirit as in [44], a linear damping property of the acoustic en-
ergy ∥τ(t)∥2

L2 + ∥u(t)∥2
L2 of the gas. In view of the conservation of the total quadratic energy

∥(τ,u,f)∥L2(t), the Theorem 1.3.1 implies that all the quadratic energy of the system is even-
tually absorbed by the particles. In the numerical simulations, this effect is visible via the
formation of filamentation in the velocity variable of the particles distribution f .

Remark 1.3.2. • It is a priori complicated to obtain a similar expansion like in [40], be-
cause the operator H does not write as a compact perturbation of a simpler operator.
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• As in [43, 44], Theorem 1.3.1 does not give any insights on the rate of convergence. It
also does not give any information on the convergence of the density of the particles
ϱf :=

∫
f dv.

• One can extend this result to a general "one bump" function of the form
f0(v) = F (v2/2)

where F : R → R+ is a strictly decreasing function. Then, the operator H is a symmetric
operator in the weighted space XR = L2

0(T)×L2
0(T)×L2

0(T×R), equipped with the scalar
product

⟨(τ,u,f),(σ,w,g)⟩XR
=
∫

T
τ(x)σ(x) dx +

∫
T

u(x)w(x) dx +
∫∫

T×R
f(x,v)g(x,v) R(v)dxdv

and R(v) = −(F/F ′)(v2/2) is the Lyapunov function introduced in [27]. Then, adapting
the proof of Theorem 1.3.1 is straightforward.

1.4 A coupled Finite Volume/semi-Lagrangian method
for thick sprays

In this section, we present the results of Chapter 4. We present a numerical scheme for the
discretisation of the thick spray equations (1.9) based on a semi-Lagrangian scheme for the
Vlasov equation, and a Finite Volume Scheme for the Euler equations. We also present two
ways to deal with close-packing limit in such flows. The first way is a correction procedure on
the particle distribution function, inspired by works by Maury and his collaborators [94, 108].
The second way is to modify the Vlasov equation, to incorporate a pressure term that explicitly
prevents the particle density from exceeding a given threshold.

We begin by giving a brief overview of congestion phenomena in fluid equations, then we turn
to the problem of close-packing limit in thick spray models. Then, we describe the numerical
methods used.

1.4.1 Congestion in fluid equations
The problem of congestion phenomena in fluid equations has received a lot of attention in the
past decades [19,22,41,42,74,83,100,101]. The applications stem from traffic flow, granular me-
dia, crowd motion, high-density regimes. In these types of problems, fluid mechanics equations
are used to describe the density of a population, or particles. In most of theses applications,
the density (e.g. the density of an animal crowd) cannot cross a given critical density ρ∗,
which corresponds to a maximal packing constraint, that is the non-overlap constraint on the
microscopic components. Standard fluid mechanics equations like the Euler system (1.7) or the
Navier-Stokes equations do not take into account such maximal density constraints. Several
different models have been proposed. An important number of these models are variants of the
following toy model 

∂tρ + ∇x · (ρu) = 0
∂t(ρu) + ∇x · (ρu ⊗ u) + ∇xp = 0
0 ≤ ρ ≤ ρ∗, supp p ⊂ {ρ = ρ∗}, p ≥ 0

(1.27)
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In the literature, such system are sometimes called hard congestion models, because the dy-
namics is free of any constraint, until the density enters the maximal density zone ρ = ρ∗, then
the constraint is imposed by a sudden activation of the pressure p. The system (4.7) is then a
free boundary problem, between the free phase where ρ < ρ⋆ and p = 0 and the congested zone
where ρ = ρ∗ and p > 0. The dynamics of the free boundary between these two regimes is not
explicitely given by the system. The lack of regularity of the pressure is an important obstacle
for a rigourous study of the system. From a numerical point of view, the implicit nature of
the pressure (no explicit formula is given) is also an important obstacle in the construction
of numerical schemes. Because of these issues, another approach is sometimes given in the
literature. It consists of replacing the hard congestion constraint (ρ∗ − ρ)p = 0 by an explicit
formula of the pressure, which blows up when ρ → ρ∗:

∂tρ + ∇x · (ρu) = 0
∂t(ρu) + ∇x · (ρu ⊗ u) + ∇xp = 0
0 ≤ ρ ≤ ρ∗, pε(ρ) → +∞ as ρ → ρ∗

(1.28)

The singular pressure p can be interpreted as a repulsive force between the particles. A com-
monly cited formula in the literature is given by:

pε(ρ) = ε

(
ρ

ρ∗ − ρ

)β

, β > 1. (1.29)

and one has formally pε → p as ε → 0. Such model are sometimes called soft congestion
models [100].

1.4.2 Close-packing limit in thick sprays
In some applications, the model (1.9) is used for small fluid volume fractions [6, 20, 49]. There
is a need for the developement of model and methods for thick sprays which preserve this
maximum principle. This is the subject of Chapter 4 where we propose two ways to deal with
this issue. The first way is to do a numerical correction of the solution by adapting a method
developed by Maury, Roudneff-Chupin, Santambrogio and Venel [94] in the context of crowd
motion. A second way is to modify the system (1.9) and to add an additionnal pressure in the
kinetic equation, which modelises the inability of the particles to overlap.

Consider the thick spray model, with the addition of a constraint on the fluid volume frac-
tion α, 

∂t(αϱ) + ∇x · (αϱu) = 0

∂t(αϱu) + ∇x · (αϱu ⊗ u) + α∇xp = D⋆

∫
R3

(v − u)f dv

∂tf + v · ∇xf + ∇v · (Γf) = 0

α = 1 − m⋆

∫
R3

f dv

m⋆Γ = −m⋆∇xp − D⋆(v − u)
α(t,x) ≥ αmin > 0.

(1.30)
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Without modification of the system, it is not expected that an initial condition (ϱini, uini, fini),
satisfying αini = 1 − 4

3πr3
p

∫
fini dv ≥ αmin will propagate in time. To fix this, we propose the

following two alternatives.

Random Repair Algorithm. Our first idea was to numerically impose the constraint α ≥
αmin. We adapted an algorithm developed by Maury and his collaborators [94, 108] for the
modelling of crowd motion. The idea of the algorithm is to redistribute the exceeding mass of
a saturated cell using a random walk. For now, this method is purely a numerical correction
and it is not clear what is the actual set of equations that this method solves.

Addition of an explicit singular pressure term Another idea we proposed is to modify
the model (4.1), and by taking inspiration from the literature on congestion phenomena [100],
to add a pressure that can deal with packing effects. The model writes



∂t(αϱ) + ∇x · (αϱu) = 0

∂t(αϱu) + ∇x · (αϱu ⊗ u) + α∇xpgas(ϱ) = D⋆

∫
R3

(v − u)f dv

∂tf + ∇x · [(v − ∇xppacking)f ] + ∇v · (Γf) = 0

α = 1 − 4
3πr3

p

∫
R3

f dv

m⋆Γ = −4
3πr3

p∇xpgas(ϱ) − D⋆(v − u)

α ≥ αmin, (α − αmin) ppacking = 0.

(1.31)

However, the direct numerical discretization of the system (4.7) is not obvious, because we do
not know how to compute the pressure ppacking when the packing limit α = αmin is achieved. We
then proposed to relax the relation (α − αmin) ppacking = 0, and to replace ppacking by another
explicit singular pressure

pε
packing(α) = ε

( 1 − α

α − αmin

)β

, β > 1

where ε > 0 is a small parameter. Formally, the pressure pε
packing(α) tends to ppacking.

1.4.3 Numerical discretization
The numerical simulation of a fluid-kinetic system, such as (1.11), presents several key chal-
lenges. First, consider the fluid part. Discretizing this part aligns with the methods used for
hyperbolic conservation laws [68], which is a complex field due to the nonlinear nature of such
systems and the frequent emergence of discontinuities in the solutions. Accurately capturing
these discontinuities is challenging, and critical to obtain convergence to the correct weak solu-
tion. Second, there is the kinetic equation, which brings additional difficulties due to its high
dimensionality [35,51,59]. For realistic simulations, the entire 6-dimensional phase space must
be discretized. This requires a grid with O(n6) points, where n represents the number of grid
points in each direction, resulting in a substantial computational cost.
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Another characteristic difficulty in solving kinetic equations is the phenomenon known as fila-
mentation. To illustrate, consider the free transport equation:

∂tf(t,x,v) + v∂xf(t,x,v) = 0 (1.32)
f(t = 0,x,v) = f0(x,v). (1.33)

This equation is a linear transport equation, and its solution can be computed explicitly as
f(t,x,v) = f0(x−vt,v). However, despite its simplicity, filamentation introduces computational
challenges. For example, with an initial condition f0(x,v) = cos(kx)e−v2/2 for some k ∈ R, the
solution evolves as:

f(t,x,v) = cos(k(x − vt))e−v2/2.

Over time, we observe that ∥∂m
v f(t,·, ·)∥ ∝ (kt)m, indicating that increasingly fine-scale struc-

tures emerge in phase space even as the solution remains smooth (see Figure 1.2). This fila-
mentation effect necessitates the use of very fine grids to accurately capture these small-scale
structures, which are essential for producing physically meaningful results.

Fig. 1.2: Filamention of the particle distribution in the phase space

1.4.4 Methods used in this thesis
We restrict ourselves to one dimensional problems. In this section, we describe the numerical
methods that are used in this thesis. All the numerical results presented are done using a code
in Python.
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The first step involves reformulating the fluid equations. In (1.9), the momentum equa-
tion contains a nonconservative product, α∇xp, which can pose challenges, particularly in the
presence of shocks. To address this, we instead consider the total momentum equation for the
spray, resulting in the fluid equations as:

∂t(αϱ) + ∂x(αϱu) = 0

∂t

(
αϱu + m⋆

∫
R

vf dv
)

+ ∂x

(
αϱu2 + m⋆

∫
R

fv2 dv
)

+ ∂xp = 0.

Denoting the vector of conserved variables

U =
n

q

 :=
 αϱ

αϱu + m⋆

∫
vf dv

 ,

and the flux

F(U,f) =
 αϱu

αϱu2 + p + m⋆

∫
R fv2 dv

 =
 q − 4

3πr3
p

∫
R fv dv

(q−m⋆

∫
R fv dv)2

n
+ nγ

αγ +
∫

R fv2 dv

 ,

we can write the governing equation as

∂tU + ∂xF(U,f) = 0.

The idea is then to discretize this this conservation law with a Finite Volume scheme. In this
study, we restrict ourselve to a simple Rusanov scheme [68].

For the Vlasov equation, we use a semi-Lagrangian scheme. Usually, particles method
such as the PIC method are used for this kind of system [5, 6, 76]. Such method have a lot
of drawback such as the presence of numerical noise. Moreover, particle methods are known
to struggle to capture correctly the distribution function when the density of particles is very
low [50,112]. Semi-Lagrangian methods have been rarely used for thick sprays in our knownledge
(see nevertheless some recent works [18,47]). We main focus of this study was the discretization
of the dispersed phase. We will use two scheme for the dispersed phase, the first one is a semi-
Lagrangian scheme based on cubic B-Spline (BPSL) [112]. The other will be a conservative
semi-Lagrangian scheme known as the Positive Flux Conservative (PFC) scheme [59].

For the time discretization, we use the following time splitting. The time-splitting is done
in a Strang fashion, at it is classical in plasma physics [35,112].

• Transport in the direction x.
Particles are transported along their velocities in the x-direction for half a time step.

• Correction of the particle distribution. In this step, we correct the transport of the
particle by taking into account the close packing constraint.

• Transport of the fluid.
The fluid variables are updated through a Finite Volume scheme with a full time step.

• Transport in the direction v.
The particles are accelerated with a full time step.
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• Transport of the particles with velocity v the direction x.
The particles undergo a final transport in the x-direction, again for half a time step.

• Correction of the particle distribution. A final correction step is applied to ensure
the particle distribution satisfies the close-packing limit.

An important remark regarding the time stepping: A formal computation of the Jacobian
A(U,f) of F(U,f) with respect to U reveals that the eigenvalues of the fluid phase are

λ± = u ±
√

p′(ϱ)
α

.

So small volume fraction α will lead to very small timestep. We will give more detail on the
choice of the time step in the Chapter 4.
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Chapter 2 : An averaged thick sprays model

Summary
The main part of this chapter corresponds to a joint work with Christophe Buet and Bruno
Després and has been published in Kinetic and Related Models [63].

We propose a new system for the modelling of thick sprays. We prove that this system
verifies conservation properties together with a maximum principle regarding the volume frac-
tion of the gas. Our main result is that the barotropic version of this system is locally in
time well-posed in Hs. We also discuss the problems associated to the construction of weak
solutions.

2.1 Local-in-time existence of strong solutions to an av-
eraged thick spray model

2.1.1 Introduction
Sprays are defined as dispersed liquid (such as droplets) or solid (such as dust) phase evolving in
an underlying gas. Such models are usually presented as a coupling between a kinetic equation
(for example, a Vlasov equation or a Vlasov-Boltzmann equation) and an hyperbolic (or Navier-
Stokes) system and were introduced in [29, 118]. A classification of different types of sprays
have been proposed in [97]. See [45] for a recent review of the different ways to model sprays.

One type of sprays are the so-called thin sprays, in which the total volume occupied by the
particles is negligible compared to the volume occupied by the gas. In this case, the coupling
is usually made through a drag force, sometimes called the Brinkman force. Such models have
been heavily studied in the purely hyperbolic setting [12, 92] and in the Navier-Stokes setting,
that is, with parabolic terms (see [7, 54, 73] and the references therein).

In this work, we are interested in so-called thick spray models, in which the total volume
occupied by the particles is no longer negligible compared to the volume of the gas. On the
mathematical side, less is known about thick spray models compared to thin spray models. We
refer to [23,27] for recent works on thick sprays.

Hereafter the gas is described with a system of compressible Euler equations, for which the
variables are the density ϱ := ϱ(t,x) ≥ 0, the velocity u := u(t,x) ∈ R3 and the internal energy
e := (t,x) ≥ 0. The particles are described with a phase space density f := f(t,x,v) ≥ 0
following a Vlasov equation. It is also possible to use a Vlasov-Boltzmann equation, but
numerical results may suggest that adding a collision operator is not necessary for accurate
simulations [17]. Various other effects such as coalescence and fragmentation can also be taken
into account, we chose here to neglect all these effects. The force acting on the particles, that
shall be denoted m⋆Γ, is usually decomposed in two parts: one related to drag or friction
between the particles and the gas. The other one is related, since the total volume of the
particles is not negligible, to the pressure of the gas:

m⋆Γ = −m⋆∇xp − D⋆(v − u).

The presence of the term −∇xp is a specific feature of thick sprays models, and it is formally
linked to bifluid equations (see [46]). Depending of the modelisation, the coefficient D⋆ can be
treated as a constant or as a function of v − u. We shall limit ourselves to the constant case.
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2.1. Local-in-time existence of strong solutions to an averaged thick spray model

The constant m⋆ can be interpreted as the mass of the particles and is linked to their radius r
by the formula (we assume here that the particles have a density equal to 1)

m⋆ = 4
3πr3.

The spray is assumed to be monodisperse, meaning that all particles have the same radius.
With those hypotheses, a possible thick spray model [23] can be written as



∂t(αϱ) + ∇x · (αϱu) = 0
∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp = m⋆∇xp

∫
R3

f dv + D⋆

∫
R3

(v − u)f dv

∂t(αϱe) + ∇x · (αϱeu) + p(∂tα + ∇x · (αu)) = D⋆

∫
R3

|v − u|2f dv

∂tf + v · ∇xf + ∇v · (Γf) = 0
α = 1 − m⋆

∫
R3

f dv

m⋆Γ = −m⋆∇xp − D⋆(v − u).

(2.1)

This model can be used to describe various physical phenomena at different length scales, such
as aerosols for medical use [24,25], the combustion in engines [5], aerosols in the atmosphere [90],
and also in astrophysics for the modelling of gas giants and exoplanets [66].

In the thin spray case, the volume fraction α is absent from the equations. One of the
simplest examples of thin spray models is the so-called (compressible, barotropic) Euler-Vlasov
system, which writes


∂tϱ + ∇x · (ϱu) = 0
∂t(ϱu) + ∇x · (ϱu ⊗ u) + ∇xp = D⋆

∫
R3

(v − u)f dv

∂tf + v · ∇xf + ∇v ·
(

D⋆

m⋆
(u − v)f

)
= 0.

(2.2)

One remarks that taking the formal limit α → 1 in (4.1) does not yield (2.2), because the
term −∇xp does not vanish. Indeed, to the best of our knowledge, there is no well established
hierarchy between the two regimes. One formal way to recover (2.2) from (4.1) is to take the
limit m⋆ → 0 (which means that the radius of the particles r⋆ goes to 0). Then α → 1, and
D⋆

m⋆
→ +∞. In the end the term ∇xp in the force acting on the particles becomes negligible

compared to the friction force, and one obtains the system (2.2).
The system (4.1) suffers from some mathematical issues. It displays losses of regularity,

and therefore standard techniques to prove a local-in-time well posedness result fail. Typically,
the term ∇xp · ∇vf in the Vlasov equation cannot be treated within standard theory for weak
solutions of such systems. To the best of our knowledge, even local-in-time well-posedness result
is lacking. It is even conjectured in [12] that the system (4.1) is ill-posed locally in time. All
those reasons motivate us to modify the model, with regularisation-convolution of certain terms
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Chapter 2 : An averaged thick sprays model

specific to thick spray models. We propose the following thick spray model with regularisation

∂t(αϱ) + ∇x · (αϱu) = 0
∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp = m⋆∇xp

∫
R3

⟨f⟩ dv + D⋆

∫
R3

(v − u)f dv

∂t(αϱe) + ∇x · (αϱeu) + p(∂tα + ∇x · (αu)) = D⋆

∫
R3

|v − u|2f dv

∂tf + v · ∇xf + ∇v · (Γf) = 0
α = 1 − m⋆

∫
R3

⟨f⟩ dv

m⋆Γ = −m⋆⟨∇xp⟩ − D⋆(v − u).

(2.3)

where the convolution operator ⟨·⟩ is introduced in the second, fifth and sixth line of the
initial model (4.1). A possible "physical" form of the convolution operator is justified in sub-
section 2.1.2. This convolution operator preserves the conservation of mass, momentum, total
energy and still produces entropy. We will show that it is enough to to obtain the local-in-time
well posedness of smooth solutions.

This work is organized as follows. In subsection 2.1.2, we justify the convolution operator
and explain the modifications of the usual thick spray equations leading to (4.4). In subsec-
tion 2.1.3, we show that the system verifies conservation properties for the total mass, the total
momentum, and the total energy of the system, and is equipped with an entropy balance law.
We also show that under reasonable assumptions, the volume fraction α stays in (0,1] for all
times, provided that the initial condition verifies this property. Finally, in subsection 2.1.5, we
prove the main result of this work on the local-in-time well-posedness in Hs of the barotropic
version of (4.4).

2.1.2 Justification of the convolution operator
The idea of a convolution operator is easy to conceive on the equation that defines the force
m⋆Γ, ignoring the friction force. Let us consider a single spherical particle of radius r > 0 with
center coordinate x⋆. In a surrounding gas with a pressure field p, the gas acts on the particle
with the force

F = −
∫

S2(x⋆,r)
pn dx.

In a thought experiment, the pressure can be extended inside the particle. Assuming that the
pressure is differentiable in the particle, one obtains using Stokes’s theorem

F = −
∫

S3(x⋆,r)
∇xp(x) dx = −m⋆

∫
R3

w(x − x⋆)∇xp(x) dx = m⋆(w ⋆ ∇xp)(x⋆),

where the convolution kernel is
w(y) = 1

m⋆

1|y|<r(y).

Using the notation ⟨·⟩ = w ⋆ · for the convolution operator, the force is rewritten as

m⋆Γ = −m⋆⟨∇xp⟩.

This formula is valid independently of the extension of p inside the particle, provided it is
differentiable. We recall the definition [56] of the total variation of a function

TV(f) := sup
(∫

R3
f div φ dx, φ ∈ C 1

c (R3; Rn), ∥φ∥L∞ ≤ 1
)

,
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2.1. Local-in-time existence of strong solutions to an averaged thick spray model

Lemma 2.1.1. The kernel w verifies w ∈ BV(R3), ∥w∥L1 = 1 and TV(w) = 3
r
.

Proof. Since w is the indicator function of a sphere, then w ∈ BV(R3). The kernel w has
unit L1-norm because m⋆ = 4

3πr3. Finally the total variation of an indicator function is the
perimeter of its support, therefore TV(w) = 4πr2

m⋆
= 3

r
.

In order to introduce this principle in the original system (4.1), one needs to reintroduce
the friction in the force m⋆Γ and to modify other equations in a way that preserve the global
conservation properties. Considering additionally that the modifications should be kept to the
minimum, we are led to propose the following system



∂t(αϱ) + ∇x · (αϱu) = 0

∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp = m⋆∇xp
∫

R3
⟨f⟩ dv + D⋆

∫
R3

(v − u)f dv

∂t(αϱe) + ∇x · (αϱeu) + p(∂tα + ∇x · (αu)) = D⋆

∫
R3

|v − u|2f dv

∂tf + v · ∇xf + ∇v · (Γf) = 0

α = 1 − m⋆

∫
R3

⟨f⟩ dv

m⋆Γ = −m⋆⟨∇xp⟩ − D⋆(v − u).

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
Let us comment in more details the equations (2.4)-(2.9). Equations (2.4), (2.6) and (2.7) are
unchanged. Equation (2.5) is modified with the convolution kernel on the right-hand-side since
we found that it is a way to recover the conservation of the total momentum, as justified in
Proposition 2.1.2. Equation (2.8) is also modified by compatibility with the conservation of
the total energy. In the last equation (2.9), the friction is reintroduced without a convolution
because there is no conservation issue related to this term. Notice that when the size of the
support of w goes to 0 (ignoring the fact that m⋆ is dependent of the size of the particle r),
meaning that w converges to a Dirac mass, one recovers the system (4.1). To close the system,
we assume that p follows a perfect gas law

p = (γ − 1)ϱe, γ > 1 (2.10)
and the energy law

e = CvT, (2.11)
with T > 0 the temperature and Cv > 0 is a constant.

2.1.3 Properties of the system
In this section, we present basic properties of the new model (4.4).

2.1.3.1 Conservation properties

To obtain the conservation properties, we will make use of the classical formula: let f,g be two
functions and let w be even, then∫

Rd
(f ⋆ w)g dx =

∫
Rd

f(g ⋆ w) dx, (2.12)

which is easily shown using a change of variable and the fact that w is even.
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Chapter 2 : An averaged thick sprays model

Proposition 2.1.2. Formally, the following holds:

(i)
d
dt

∫
R3

αϱ dx = 0,
d
dt

∫∫
R3×R3

f dxdv = 0,

(ii)
d
dt

(∫
R3

αϱu dx +
∫∫

R3×R3
fv dxdv

)
= 0,

(iii)
d
dt

(1
2

∫
R3

αϱ|u|2 dx + 1
2

∫∫
R3×R3

|v|2f dxdv +
∫

R3
αϱe dx

)
= 0.

Proof. By formally we mean that all functions are smooth and integrable. The proof of (i) is
obvious because the equations are already in divergence form.

To obtain (ii) one multiplies the Vlasov equation (2.7) by v. Integration yields

m⋆∂t

∫
R3

fv dv + m⋆∇x ·
∫

R3
fv ⊗ v dv = −m⋆⟨∇xp⟩

∫
R3

f dv − D⋆

∫
R3

(v − u)f dv.

Summing with the fluid momentum equation (2.5), one gets

∂t

(
αϱu + m⋆

∫
R3

fv dv
)

+ ∇x ·
(

αϱu ⊗ u + m⋆

∫
R3

fv ⊗ v dv
)

+ ∇xp (2.13)

= m⋆

(
∇xp

∫
R3

⟨f⟩ dv − ⟨∇xp⟩
∫

R3
f dv

)
. (2.14)

Using formula (2.12), one has
∫

R3 (∇xp
∫

R3⟨f⟩ dv − ⟨∇xp⟩
∫

R3 f dv) dx = 0, so integrating (2.14)
in x yields (ii).

To obtain (iii) one multiplies the momentum equation (2.5) by u. One obtains

∂t

(
αϱ

|u|2

2

)
+ ∇x ·

(
αϱu

|u|2

2

)
+ u · ∇xp

= m⋆u · ∇xp ·
∫

R3
⟨f⟩ dv + D⋆

∫
R3

u · (v − u)f dv.

Multiplying the Vlasov equation (2.7) by m⋆
|v|2

2 and integrating, one gets

m⋆∂t

(∫
R3

f
|v|2

2 dv

)
+ m⋆∇x ·

(∫
R3

fv
|v|2

2 dv

)

= −m⋆⟨∇xp⟩ ·
∫

R3
fv dv − D⋆

∫
R3

v · (v − u)f dv.
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2.1. Local-in-time existence of strong solutions to an averaged thick spray model

Then, addition of these equations to the internal energy equation (2.6) yields

A := ∂t

(
αϱ

|u|2

2 + m⋆

∫
R3

f
|v|2

2 dv + αϱe

)

+ ∇x ·
(

αϱu
|u|2

2 + m⋆

∫
R3

fv
|v|2

2 dv + αϱeu

)

= −p∂tα − p∇x · (αu) − u · ∇xp − m⋆u · ∇xp
∫

R3
⟨f⟩ dv − m⋆⟨∇xp⟩ ·

∫
R3

fv dv

+ D⋆

∫
R3

u · (v − u)f dv − D⋆

∫
R3

v · (v − u)f dv + D⋆

∫
R3

|v − u|2f dv

= −p∂tα − p∇x · (αu) − u · ∇xp + m⋆u · ∇xp
∫

R3
⟨f⟩ dv − m⋆⟨∇xp⟩ ·

∫
R3

fv dv.

Then, using 1 − α = m⋆

∫
R3⟨f⟩ dv, one has m⋆u · ∇xp

∫
R3⟨f⟩ dv = (1 − α)u · ∇xp,

A = −p∂tα − p∇x · (αu) − u · ∇xp + (1 − α)u · ∇xp − m⋆⟨∇xp⟩ ·
∫

R3
fv dv

= −p∂tα − p∇x · (αu) − αu · ∇xp − m⋆⟨∇xp⟩ ·
∫

R3
fv dv.

One writes p∇x · (αu) + αu · ∇xp = ∇x · (αup) and ∂tα = m⋆∇x ·
∫

R3⟨f⟩v dv to obtain

A = −∇x · (αup) − p∂tα − m⋆⟨∇xp⟩ ·
∫

R3
fv dv

= −∇x · (αup) − m⋆p∇x ·
∫

R3
⟨f⟩v dv − m⋆⟨∇xp⟩ ·

∫
R3

fv dv

= −∇x · (αup) − m⋆p∇x ·
∫

R3
⟨f⟩v dv − m⋆∇xp ·

∫
R3

⟨f⟩v dv

+ m⋆

(
∇xp ·

∫
R3

⟨f⟩v dv − ⟨∇xp⟩ ·
∫

R3
fv dv

)
= −∇x · (αup) − m⋆∇x ·

(
p
∫

R3
⟨f⟩v dv

)
+ m⋆

(
∇xp

∫
R3

⟨f⟩v dv − ⟨∇xp⟩
∫

R3
fv dv

)
.

Using again formula (2.12), we have
∫

R3 (∇xp
∫

R3⟨f⟩v dv − ⟨∇xp⟩
∫

R3 fv dv) dx = 0, so inte-
grating in x yields (iii).

2.1.3.2 Entropy property

Following the analysis made in [27], we show that the system (2.4)-(2.9) closed by the equation
of state (2.10) is equipped with an entropy inequality.

Proposition 2.1.3. Formally, one has the entropy inequality

∂t(αϱS) + ∇x · (αϱSu) = D⋆

T

∫
R3

|v − u|2f dv ≥ 0. (2.15)

33



Chapter 2 : An averaged thick sprays model

Proof. The density equation (2.4) yields

ϱ(∂tα + ∇x · (αu)) + αDtϱ = 0 ⇐⇒ ∂tα + ∇x · (αu) = αϱDtτ,

with τ = 1/ϱ > 0 the specific volume, and Dt = ∂t + u · ∇x. The internal energy equation (2.6)
can be rewritten as

αϱ(Dte + pDtτ) = D⋆

∫
R3

|v − u|2f dv.

With the perfect gas pressure law (2.10) and the energy law (2.11), the entropy S is

S = Cv ln(eϱ1−γ).

The second principle of thermodynamics writes

TdS = de + pdτ,

so that
αϱDtS = D⋆

T

∫
R3

|v − u|2f dv,

which is rewritten as (2.15).

2.1.4 Positivity of the volume fraction of the gas for smooth solu-
tions

In this section, we study the positivity of the volume fraction α, which is that if 0 < α ≤ 1 at
time t = 0, then the inequality stays true for all times t > 0. Although it is clear that α ≤ 1
(due to the fact that f ≥ 0 is propagated by the characteristic curves), it is less immediate to
prove that α > 0. In [27], the authors proved that this property holds for thick spray equations
(4.1) under reasonable assumptions. We prove here the same result for (4.4) under similar
assumptions.

Proposition 2.1.4. We assume that a solution of the system (4.4) is defined on the whole
space R3 and is smooth on [0,Tend) for some Tend > 0. We assume that

• For all (x,v) ∈ R3 × R3, f(0,x, v) > 0.

• One has 0 < ϱ− = inf
x∈R3

ϱ(0,x) ≤ ϱ+ = sup
x∈R3

ϱ(0,x) < +∞.

• One has −∞ < S− = inf
x∈R3

S(0, x).

• One has 0 < α− = inf
x∈R3

α(0,x) ≤ 1.

We assume the following regularity of the velocity variables

u ∈ W 1,∞([0,Tend) × R3),
∫

R3 fv dv∫
R3⟨f⟩ dv

∈ L∞([0,Tend) × R3).

We finally assume that the pressure vanishes at infinity, that is for all ε > 0, there exists A > 0
such that

0 < p(t,x) = (γ − 1)ϱ(t,x)e(t,x) < ε, for 0 ≤ t < Tend and |x| > A.
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2.1. Local-in-time existence of strong solutions to an averaged thick spray model

Then there exists a constant C > 0 depending on Tend, ϱ+, ϱ−, α−, S−, A (corresponding to
ε = 1), ∥u∥W 1,∞([0,Tend[×R3) and

∥∥∥∥∫ fv dv∫
⟨f⟩ dv

∥∥∥∥
L∞([0,Tend[×R3)

so that the following estimate holds :

0 < C ≤ α(t,x) ≤ 1, t ∈ [0,Tend[, x ∈ R3.

Proof. The momentum equation (2.5) can be rewritten as

α∇xp = −αϱDtu + D⋆
1 − α

m⋆

(∫
R3 fv dv∫
R3⟨f⟩ dv

− u

∫
R3 f dv∫

R3⟨f⟩ dv

)
,

with Dt = ∂t + u · ∇x. Using the regularity u ∈ W 1,∞ and the assumptions above, we find

∥α∇xp∥L∞ ≤ C (1 + ∥1 − α∥L∞) .

Following the fact that p follows a perfect gas law, we have the identity

α∇xp =
[
(γ − 1)1/γeS/Cvγαϱ

] 1
p1/γ

∇xp =
[

(γ − 1)1/γeS/(Cvγ)

1 − 1/γ
αϱ

]
∇x(p1−1/γ).

Now, using again u ∈ W 1,∞ and a classical treatment of the characteristic curves of the
continuity equation, we obtain for some C−, C+ > 0,

C− = inf
x∈R3

(αϱ)(t,x) ≤ sup
x∈R3

(αϱ)(t,x) = C+, 0 ≤ t < Tend. (2.16)

Therefore, because S is lower bounded.

∥∇x(p1−1/γ)∥L∞ ≤ C (1 + ∥1 − α∥L∞) .

We then use the fact that the pressure vanishes at infinity

∥p1−1/γ∥L∞ ≤ C (1 + ∥1 − α∥L∞) .

We then obtain that the density ϱ is bounded, using the perfect gas law for the pressure and
the boundedness of the entropy S,

∥ϱγ−1∥L∞ ≤ C (1 + ∥1 − α∥L∞) .

Finally, using (2.16) ∥∥∥∥ 1
α

∥∥∥∥
L∞

≤ C
(
1 + ∥1 − α∥1/(γ−1)

L∞

)
≤ C.

2.1.5 Local in time well-posedness
In this section, we consider the barotropic version of system (4.4), meaning that we suppose
that the pressure depends only on the density of the fluid ϱ, that is

p = ϱγ, γ > 1,
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Chapter 2 : An averaged thick sprays model

so that the energy equation (2.6) is not needed. We also assume, without loss of generality,
that D⋆ = 0 and m⋆ = 1. The treatment of the friction term presents no difficulty because it
does not contain any derivatives, so the treatment of this term is very similar to what is done
in [12]. The barotropic system writes

∂t(αϱ) + ∇x · (αϱu) = 0
∂t(αϱu) + ∇x · (αϱu ⊗ u) + ∇xp = ∇xp

∫
R3

⟨f⟩ dv

∂tf + v · ∇xf − ⟨∇xp⟩ · ∇vf = 0
α = 1 −

∫
R3

⟨f⟩ dv

p = p(ϱ) = ϱγ.

(2.17)

The goal of this section is to prove the following theorem:

Theorem 2.1.5. Let Ω = (0,+∞)×R3, s ∈ N such that s > 3/2+1 and Ω1,Ω2 two open sets
of Ω such that Ω1 ⊂ Ω2 and Ω1 and Ω2 are relatively compact in Ω. Let (ϱ0, ϱ0u0) : R3 → Ω1
satisfying ϱ0 − 1 ∈ Hs(R3) and u0 ∈ Hs(R3). Let f0 : R3 × R3 → R+ be a function in
C 1

c (R3 × R3) ∩ Hs(R3 × R3) satisfying

∥f0∥L∞ <
1

24∥w∥L1VM(0)3 .

with VM(0) = sup
(x,v)∈R3×R3,f0(x,v)>0

|v|.

Then, one can find T ∈]0,1[ such that there exists a solution (ϱ, ϱu, f) of the system (2.17)
belonging to C 1([0,T ] × R3, Ω2) × C 1

c ([0,T ] × R3 × R3, R+). Moreover this solution is unique
and it satisfies

C ≤ α(t,x) ≤ 1, t ∈ [0,T ], x ∈ R3.

.

Remark 2.1.6. This result could be extended to the whole system (4.4) with an energy equation.
It could also be extended if p a sufficiently well-behaved function [12] not necessarily a power
function of ϱ. For example, it works for p ∈ C (R+) ∩ C ∞(R+ \ {0}). It is also true if w is a
non-negative convolution kernel in BV(R3).

The proof is based on the following idea. We want to combine classical theory of local-in-time
solutions for symmetrisable hyperbolic systems of conservation laws (see [87]) and the theory
of characteristics for the control of Hs norms of f and its support (like for the Vlasov-Poisson
system [102]). This idea has already been used in [12, 92]. Finding appropriate symmetrisers
for the system (2.17) is not obvious. Our strategy is to expand the derivatives on the left-
hand-side of the equations, then to treat the terms containing derivatives of α as source terms.
The left-hand-side then becomes the well-known Euler equations of gas dynamics for which a
symmetriser is classical. To apply the proof [87], the source term needs to be of degree 0, that
is, no derivative. An issue is that the initial thick sprays equations (4.1) contains derivatives
in the source term. This is an asset of the convolution operator in systems (4.4) and (2.17),
because it avoids the loss of regularity in the source term in the original thick spray equations
(4.1).
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Proposition 2.1.7. The system (2.17) is equivalent, for strong solution verifying α > 0, to∂tU + ∇x · F(U) = b(U,f)
∂tf + v · ∇xf − ⟨∇xp⟩ · ∇vf = 0,

with

U =
 ϱ

ϱu

 , F(U) =
 ϱu

ϱu ⊗ u + pId

 ,

and b(U,f) =


ϱu · ∇x

∫
R3⟨f⟩ dv

1 −
∫

R3⟨f⟩ dv
− ϱ∇x ·

∫
R3⟨f⟩v dv

1 −
∫

R3⟨f⟩ dv
ϱu ⊗ u

∫
R3 ∇x⟨f⟩ dv

1 −
∫

R3⟨f⟩ dv
− ϱu∇x ·

∫
R3⟨f⟩v dv

1 −
∫

R3⟨f⟩ dv

 .

Furthermore, the hyperbolic part of the system can be symmetrized as

S(U)∂tU +
3∑

i=1
(SAi)(U)∂xi

U = S(U)b(U,f),

with

S(U) =
p′(ϱ) + |u|2 −uT

−u Id

 .

See [12] for the expression of the matrices Ai. Moreover, the symmetric positive definite matrix
S(U) is a smooth function of U. For all relatively compact set Ω1, there exists a constant c > 0
such that ∀U ∈ Ω1

cId ≤ S(U) ≤ c−1Id.

Finally, the matrices SAi(U) are symmetric.

Proof. First, notice that from the Vlasov equation in (2.17), one has, by first applying the
convolution operator ⟨·⟩ and integrating in v

∂tα = ∇x ·
∫

R3
⟨f⟩v dv.

Taking the first equation of (2.17), one has

ϱ∂tα + α∂tϱ + α∇x · (ϱu) + ϱu · ∇xα = 0,

then, by moving to the right-hand-side the terms containing derivatives of α, and dividing by
α = 1 −

∫
R3⟨f⟩ dv, one obtains

∂tϱ + ∇x · (ϱu) = ϱu · ∇x

∫
R3⟨f⟩ dv

1 −
∫

R3⟨f⟩ dv
− ϱ∇x ·

∫
R3⟨f⟩v dv

1 −
∫

R3⟨f⟩ dv
.

Then, first writting the second equation of (2.17) as

∂t(αϱu) + ∇x · (αϱu ⊗ u) + α∇xp = 0,

and by using similar computations as before, one is led to

∂t(ϱu) + ∇x · (ϱu ⊗ u) + ∇xp = ϱu ⊗ u
∫

R3 ∇x⟨f⟩ dv

1 −
∫

R3⟨f⟩ dv
− ϱu∇x ·

∫
R3⟨f⟩v dv

1 −
∫

R3⟨f⟩ dv
.

For the symmetrisation of the system, we refer to [12].
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We now introduce some notations. Let ϱ be a smooth enough function, then the Vlasov
equation in (2.17) is a linear transport equation

∂tf + v · ∇xf − ⟨∇xϱγ⟩ · ∇vf = 0.

It has a unique solution, computed by the method of characteristics

f(t,x,v) = f0(X(0; x,v,t),V(0; x,v,t)),

where the characteristic curves are defined by

dX
dt

(t; x,v,s) = V(t; x,v,s),

X(s; x,v,s) = x,

dV
dt

(t; x,v,s) = −⟨∇xϱγ(X(t; x,v,s),t)⟩,

V(s; x,v,s) = v.

If f0 has a compact support, then f(t,·, ·) also has a compact support for all t. We denote

XM(t) = sup
(x,v)∈R3×R3,f(t,x,v)>0

|x|,

and
VM(t) = sup

(x,v)∈R3×R3,f(t,x,v)>0
|v|.

Then the following holds: supp f(t, · ,·) ⊂ B(0,XM(t)) × B(0,VM(t)).
In the following, we will use the following notations (s ∈ N, T > 0, and α is a multi-index):

∥h∥Hs =
∑

|α|≤s

∥∂αh∥L2 =
∑

|α|≤s

√∫
R3

|∂αh(x)|2 dx,

∥h∥Hs,T = sup
t∈[0,T ]

∥h∥Hs(t),

∥h∥L2,T = sup
t∈[0,T ]

∥h∥L2(t).

In particular, the notation ∂α will always denote a derivative in the x variable. Those notations
will sometimes be used for function h = h(x,v), and in this case the norms are always on both
variables.

2.1.6 Iterative approximation scheme
We explain here the main steps of the proof of Theorem 2.1.5. We fix s ∈ N an integer such
that s > 3/2 + 1. Constructing a solution of the system (2.17) is equivalent to constructing a
solution to the symmetrised quasi-linear system

S(U)∂tU +
3∑

i=1
(SAi)(U)∂xi

U = S(U)b(U,f),

∂tf + v · ∇xf − ⟨∇xp⟩ · ∇vf = 0.

(2.18)
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2.1. Local-in-time existence of strong solutions to an averaged thick spray model

The proof follows a classical iterarive scheme. We first work with smooth and compactly
supported initial data

ϱ0 − 1 ∈ D(R3), u0 ∈ D(R3), f0 ∈ D(R3 × R3). (2.19)

Later, we use a mollification process to prove the case of all initial data in Hs. We require that
f0 is small, more precisely, we assume

∥f0∥L∞ <
1

24∥w∥L1VM(0)3 . (2.20)

We denote Ω = (0, + ∞) × R3 and Ω1 a relatively compact open set of Ω such that

U0 :=
 ϱ0

ϱ0u0

 ∈ Ω1.

We will construct the solution of (2.18) through the following iterative process: for k = 0,
one sets θ0 = +∞ and (U0(t),f 0(t)) = (U0,f0). Then, given θk > 0 , and functions Uk and fk

that live on the time interval [0,θk), one defines (Uk+1,fk+1) as the solution of the linear system

S(Uk)∂tUk+1 +
3∑

i=1
(SAi)(Uk)∂xi

Uk+1 = S(Uk)b(Uk,fk), (2.21)

Uk+1(x,0) = U0(x), (2.22)
∂tf

k+1 + v · ∇xfk+1 − ⟨∇xpk⟩ · ∇vfk+1 = 0, (2.23)
fk+1(x,v,0) = f0(x,v). (2.24)

For now, it is not obvious that the sequence (Uk, fk)k∈N is well-defined.
Let Ω2 a relatively compact open subset of R3 such that Ω1 ⊂ Ω2. From the Sobolev

embedding for s > 3/2 + 1, Hs(R3) ↪→ L∞(R3), there exists a constant R > 0 depending on
Ω1, Ω2 and s, such that, if ∥U − U0∥Hs ≤ R, then U ∈ Ω2. Then, one defines θk+1 as the
supremum of times θ < θk such that ∥Uk+1 − U0∥Hs,θ ≤ R.

The system (2.21) is linear in Uk+1, symmetric and has smooth coefficients on [0, θk),
therefore it admits a smooth solution on [0,θk) [87]. For equation (2.23), since it is a linear
transport equation with smooth coefficients on [0,θk), it admits a smooth solution that can be
explicitly computed by the method of characteristics. Finally, θk+1 > 0 since Uk+1 is smooth,
and U0 ∈ Ω1. The sequence (Uk,fk)k∈N is then well-defined.

We will restrict further the lifetime of the solution. One defines Tk as the supremum of
times T ∈ [0,θk) such that

∥Uk − U0∥Hs,T ≤ R, (2.25)
∀t ∈ [0,T ], Xk

M(t) ≤ 2XM(0), (2.26)
∀t ∈ [0,T ], V k

M(t) ≤ 2VM(0), (2.27)∥∥∥∥∫
R3

⟨fk⟩ dv

∥∥∥∥
L∞,T

≤ 24∥w∥L1VM(0)3∥f0∥L∞ , (2.28)
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and such that Tk+1 ≤ Tk. In particular,∥∥∥∥∥ 1
1 −

∫
R3⟨fk⟩ dv

∥∥∥∥∥
L∞

≤
∥∥∥∥∥ 1

1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

, (2.29)

and one considers the sequence (Uk,fk)k∈N on the time interval [0,Tk). Note that the right-
hand-side of (2.29) is finite thanks to the hypothesis (2.20). We emphasize that the number 2
in the inequalities (2.26)-(2.28) serves only a cosmetic purpose. One could replace the number
2 by any a > 1 and it would not change the proof.

The proof is then made of three parts:

• First, we prove that there exists a time T⋆ > 0 such that Tk ≥ T⋆ for all k ∈ N. This is
the subject of the Proposition 2.1.16, for which we will need lemmas 2.1.13, 2.1.14 and
2.1.15. Note that, without this result, the sequence of lifespan (Tk)k∈N could converge to
0. This is the subject of Section 2.1.7

• Next, we prove in Proposition 2.1.17 that the sequence (Uk,fk)k∈N converges in the
space L∞(0,T⋆⋆; L2(R3)) × L∞(0,T⋆⋆; L2(R3 × R3)), where 0 < T⋆⋆ ≤ T⋆. The proof of
this Proposition is found in Section 2.1.8

• Finally, we conclude the proof of Theorem 2.1.5 and we prove that the limit (U,f) is a
solution of (2.18) in C 1([0,T ] × R3, Ω2) × C 1

c ([0,T ] × R3 × R3, R+) and the solution is
unique. We also explain why the proof works in the case of all initial data in Hs.

2.1.7 Preliminary lemmas and a priori estimates

2.1.7.1 Preliminary lemmas

We write some preliminary lemmas which we use in this work.

Lemma 2.1.8. Let S, Ai ∈ C 1([0,T ) × R3, M3(R)) be smooth matrices such that S and SAi

are symmetric, We suppose moreover that there exists c > 0 such that cId ≤ S(t,x) ≤ c−1Id.
Then, all smooth and compactly supported vectors W and F satisfying the equation S∂tW +∑
i

SAi∂xi
W = F with the initial data W(0,x) = W0(x) verify the energy estimate

∥W∥L2 ≤ c−1

∥W0∥L2 + 1
2

∥∥∥∥∥∂tS +
∑

i

∂xi
(SAi)

∥∥∥∥∥
L∞,T∫ t

0
∥W∥L2(τ) dτ +

∫ t

0
∥F∥L2(τ) dτ

)
. (2.30)

Proof. By multiplying by WT and integrating, one has

1
2∂t

∫
R3

WT SW dx = 1
2

∫
R3

WT (∂tS +
∑

i

∂xi
(SAi))W dx +

∫
R3

WT F dx,

then one integrates with respect to t and uses the estimate WT SW ≥ cWT W.
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2.1. Local-in-time existence of strong solutions to an averaged thick spray model

Lemma 2.1.9 (See [87]). Let g : Ω ⊂ R3 → R3 a smooth vector-valued function, u : R3 →
Ω1 ⊂ Ω with Ω1 relatively compact in Ω. Assume that u ∈ Hs(R3)∩L∞(R3). Then for |α| ≤ s,
one has the inequality

∥∂αg(u)∥L2 ≤ C(s) sup
v∈Ω1

(
sup

|β|≤s−1
|∂βg(v)|

)
∥u∥s−1

L∞ ∥u∥Hs .

Lemma 2.1.10 (See [87]). Let f,g ∈ Hs(R3) ∩ L∞(R3), one has the inequality

∥∂α(fg)∥L2 ≤ C(s)(∥f∥L∞∥g∥Hs + ∥f∥Hs∥g∥L∞).

Lemma 2.1.11. Let f ∈ Hs(R3) and g ∈ BV(R3). Then

∥∇(f ⋆ g)∥Hs ≤ ∥f∥HsTV(g)

and
∥∇(f ⋆ g)∥L∞ ≤ ∥f∥L∞TV(g).

Proof. The proof is done via an approximation argument. The function g belongs to BV(R3),
therefore [56] (Theorem 5.3), there exists a sequence (gk)k∈N ∈ BV(R3) ∩ C ∞(R3) such that
gk

L1
−→ g and TV(gk) → TV(g). In particular, gk ∈ W 1,1(R3) for all k, and TV(gk) =

∥∇gk∥L1 → TV(g). Applying Young’s convolution inequality to f and gk, we obtain ∥∇(f ⋆
gk)∥L2 ≤ ∥f∥L2∥∇gk∥L1 , passing to the limit we obtain ∥∇(f ⋆ g)∥L2 ≤ ∥f∥L2TV(g). Replacing
f by ∂αf with |α| ≤ s in the previous inequality, we obtain ∥∇(f ⋆ g)∥Hs ≤ ∥f∥HsTV(g). The
second inequality follow directly from the definition of the total variation.

Lemma 2.1.12 (See [87]). Let h ∈ Hs(R3), ∇h ∈ L∞(R3), g ∈ Hs−1(R3) ∩ L∞(R3) and
|α| ≤ s, then

∥∂α(hg) − h∂αg∥L2 ≤ C(s) (∥∇h∥L∞∥g∥Hs−1 + ∥g∥L∞∥h∥Hs) .

2.1.7.2 A priori estimates

The goal is to prove that the sequence (Tk)k∈N has a strictly positive lower bound T⋆. In all
this section, one considers initial data such that (2.19)-(2.20) hold and define the sequences θk,
Uk, fk by (2.21)-(2.24) and Tk by (2.25)-(2.27).

Lemma 2.1.13. For all k ≥ 0,

∥∂tUk+1∥Hs−1,Tk+1 ≤ C(s,f0,U0,Ω2,R,w)TV(w). (2.31)
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Proof. Let t ∈ [0, Tk+1), then

∥∂tUk+1∥Hs−1(t) ≤
∑

i

∥Ai(Uk)∂xi
Uk+1∥Hs−1,Tk+1 + ∥b(Uk,fk)∥Hs−1,Tk+1 .

One has to control each term, let’s start with b. One has,

∥b(Uk,fk)∥Hs−1,Tk+1 =
∑

|α|≤s−1

∥∥∥∥∥∥∥∥∥∥


∂α

(
ϱk
∫

R3(uk − v) · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

)

∂α

(
ϱkuk

∫
R3(uk − v) · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

)

∥∥∥∥∥∥∥∥∥∥

L2,Tk+1

.

Applying lemma 2.1.10 for |α| ≤ s − 1,∥∥∥∥∥∂α

(
ϱkuk ·

∫
R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

)∥∥∥∥∥
L2

≤ C(s)
(

∥ϱkuk∥Hs−1

∥∥∥∥∥
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L∞

+ ∥ϱkuk∥L∞

∥∥∥∥∥
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
Hs−1

)
. (2.32)

Thanks to (2.25), one has

∥ϱkuk∥Hs−1 ≤ ∥Uk∥Hs−1 ≤ ∥U0∥Hs−1 + ∥Uk − U0∥Hs−1 ≤ C(U0,R).

Thanks to the Sobolev embedding Hs−1(R3) ↪→ L∞(R3), one has

∥ϱkuk∥L∞ ≤ C(Ω2)∥ϱkuk∥Hs−1 ≤ C(Ω2,U0,R).

Thanks to (2.25)-(2.28) and lemma 2.1.11, one has∥∥∥∥∫
R3

∇x⟨fk⟩ dv
∥∥∥∥

L∞
≤ TV(w)

∥∥∥∥∫
R3

fk dv
∥∥∥∥

L∞

≤ TV(w)23(V k
M)3∥fk∥L∞

≤ TV(w)23(V k
M)3∥f0∥L∞

≤ C(f0)TV(w).

So that, using (2.20), (2.29) and the previous inequality∥∥∥∥∥
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L∞

≤ C(f0,w)TV(w).

It remains to bound the last term in (2.32)
∥∥∥∥∫R3 ∇x⟨fk⟩ dv

1−
∫

R3 ⟨fk⟩ dv

∥∥∥∥
Hs−1

. Again applying lemma 2.1.10
and lemma 2.1.11, one has for |α| ≤ s − 1:∥∥∥∥∥∂α

( ∫
R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

)∥∥∥∥∥
L2

≤ C(s)
(∥∥∥∥∫

R3
∇x⟨fk⟩ dv

∥∥∥∥
Hs−1

∥∥∥∥∥ 1
1 −

∫
R3⟨fk⟩ dv

∥∥∥∥∥
L∞

+
∥∥∥∥∫

R3
∇x⟨fk⟩ dv

∥∥∥∥
L∞

∥∥∥∥∥ 1
1 −

∫
R3⟨fk⟩ dv

∥∥∥∥∥
Hs−1

)

≤ C(s)
(

C(f0,w)TV(w) + C(f0)TV(w)
∥∥∥∥∥ 1

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
Hs−1

)
.
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For the term
∥∥∥∥ 1

1−
∫

R3 ⟨fk⟩ dv

∥∥∥∥
Hs−1

, one has

∥∥∥∥∥ 1
1 −

∫
R3⟨fk⟩ dv

∥∥∥∥∥
Hs−1

=
∑

|α|≤s−1

∥∥∥∥∥∂α

(
1

1 −
∫

R3⟨fk⟩ dv

)∥∥∥∥∥
L2

=
∑

|α|≤s−1

∥∥∥∥∥ Pα

(1 −
∫

R3⟨fk⟩ dv)q(α)

∥∥∥∥∥
L2

,

where Pα is a polynomial in ∂α(1 −
∫

R3⟨fk⟩ dv), and q(α) is an integer that depends on α. One
can bound the numerator Pα thanks to the inequality∥∥∥∥∫

R3
⟨fk⟩ dv

∥∥∥∥
Hs

≤ (V k
M)3/2∥⟨fk⟩∥Hs

≤ TV(w)C(f0),

where we used lemma 2.1.11, and the denominator is bounded thanks to (2.28). As a conse-
quence, one obtains∥∥∥∥∥∂α

(
ϱkuk ·

∫
R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

)∥∥∥∥∥
L2

≤ C(U0,f0, Ω2,R,w)TV(w). (2.33)

Next, one has the term∥∥∥∥∥∂α

(
ϱk
∫

R3 v · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

)∥∥∥∥∥
L2

≤C(s)
(

∥ϱk∥Hs−1

∥∥∥∥∥
∫

R3 v · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L∞

+∥ϱk∥L∞

∥∥∥∥∥
∫

R3 v · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
Hs−1

)
.

We have, using lemma 2.1.11∥∥∥∥∫
R3

v · ∇x⟨fk⟩ dv
∥∥∥∥

L∞
≤ 23∥fk∥L∞(V k

M)4TV(w) ≤ C(f0,w)TV(w),

and, ∥∥∥∥∫
R3

v · ∇x⟨fk⟩ dv

∥∥∥∥
Hs−1

≤ C(VM)
∥∥∥∥∫

R3
∇x⟨fk⟩ dv

∥∥∥∥
Hs−1

≤ C(f0)TV(w),

so ∥∥∥∥∥∂α

(
ϱk
∫

R3 v · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

)∥∥∥∥∥
L2

≤ C(U0,f0, Ω2,R,w)TV(w). (2.34)

It is clear thanks to the previous inequalities that we have the bound∥∥∥∥∥∥
ϱkuk

(∫
R3 v · ∇x⟨fk⟩ dv

)
1 −

∫
R3⟨fk⟩ dv

∥∥∥∥∥∥
Hs−1

≤ C(s,f0,R,U0,Ω2,w)TV(w). (2.35)

For the term ∥∥∥∥∥ϱkuk ⊗ uk
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
Hs−1

=

∥∥∥∥∥∥
ϱkuk

(
uk ·

∫
R3 ∇x⟨fk⟩ dv

)
1 −

∫
R3⟨fk⟩ dv

∥∥∥∥∥∥
Hs−1

,
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we use the fact that Ω2 is relatively compact and so ϱk is bounded from below by a constant
that depends only on Ω2. Writing∥∥∥∥∥∥∂α

ϱkuk
(
uk ·

∫
R3 ∇x⟨fk⟩ dv

)
1 −

∫
R3⟨fk⟩ dv

∥∥∥∥∥∥
L2

≤ C(s)
(

∥ϱkuk∥Hs−1

∥∥∥∥∥uk ·
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L∞

+ ∥ϱkuk∥L∞

∥∥∥∥∥uk ·
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
Hs−1

)
,

and
∥uk∥L∞ =

∥∥∥∥∥ϱkuk

ϱk

∥∥∥∥∥
L∞

≤ C(Ω2)∥ϱkuk∥L∞ ,

one obtains ∥∥∥∥∥uk ·
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L∞

≤ C(s,U0,f0, R, Ω2,w)TV(w).

Therefore ∥∥∥∥∥∂α

(
uk ·

∫
R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

)∥∥∥∥∥
L2

≤ C(s)
(

∥uk∥Hs−1

∥∥∥∥∥
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L∞

+∥uk∥L∞

∥∥∥∥∥
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
Hs−1

)
.

Writing

∥∂αuk∥L2 ≤ C(s)
(

∥ϱkuk∥Hs−1

∥∥∥∥∥ 1
ϱk

∥∥∥∥∥
L∞

+ ∥ϱkuk∥L∞

∥∥∥∥∥ 1
ϱk

∥∥∥∥∥
Hs−1

)
,

one notices that ∥∥∥∥∥∂α

(
1
ϱk

)∥∥∥∥∥
L2

=
∥∥∥∥∥Pα(∂αϱk)

(ϱk)q(α)

∥∥∥∥∥
L2

≤ 1
∥ (ϱk)q(α) ∥L∞

∥Pα(∂αϱk)∥L2

≤ C(Ω2,R, U0),

where Pα is a polynomial in ∂α(ϱk) and q(α) an integer depending on α. One gets∥∥∥∥∥∥
ϱkuk

(
u ·

∫
R3 ∇x⟨fk⟩ dv

)
1 −

∫
R3⟨fk⟩ dv

∥∥∥∥∥∥
Hs−1

≤ C(s,f0,R,U0,Ω2,w)TV(w). (2.36)

In the end, combining the inequalities (2.33)-(2.36)

∥b(Uk,fk)∥Hs−1,Tk+1 ≤ C(s,U0,f0,w,R, Ω2)TV(w).

We turn to the term

∥Ai(Uk)∂xi
Uk+1∥Hs−1,Tk+1 =

∑
|α|≤s−1

∥∂α(Ai(Uk)∂xi
Uk+1)∥L2,Tk+1 .
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Using lemma 2.1.9 and the Sobolev embedding Hs(R3) ↪→ L∞(R3), one has for |α| ≤ s − 1,

∥∂α(Ai(Uk)∂xi
Uk+1)∥L2,Tk+1 ≤∥∂α((Ai(Uk) − Ai(U0))∂xi

Uk+1)∥L2,Tk+1

+ ∥Ai(U0)∂α(∂xi
Uk+1)∥L2,Tk+1

≤C(s)(∥Ai(Uk) − Ai(U0)∥Hs,Tk+1∥∂xi
Uk+1∥L∞,Tk+1

+ ∥AI(U0)∥L∞,Tk+1∥∂xi
Uk+1∥Hs−1,Tk+1)

≤C(s,Ω2, R, U0).

This completes the proof.

Lemma 2.1.14. For all k ≥ 0 and T ∈ [0, inf(1,Tk+1))

sup
t∈[0,T ]

∥Uk+1 − U0∥Hs(t) ≤ TC(s,R,Ω2, U0, f0,w,TV(w))eC(s,R,f0,U0,Ω2,w,TV(w))T . (2.37)

Proof. The function Wk+1 = Uk+1 − U0 satisfies

S(Uk)∂tWk+1 +
∑

i

(SAi)(Uk)∂xi
Wk+1 = S(Uk)b(Uk,fk) + Hk,

Wk+1(x,0) = 0,

with Hk = −∑
i

(SAi)(Uk)∂xi
U0. We look for a bound in Hs of Wk+1. The function ∂αWk+1satifies

S(Uk)∂t∂
αWk+1 +

∑
i

(SAi)(Uk)∂xi
∂αWk+1

= S(Uk)∂α(S−1(Uk)Hk + b(Uk,fk)) + Fα,

with Fα = S(Uk)∑
i

(
Ai(Uk)∂xi

∂αWk+1 − ∂α(Ai(Uk)∂xi
Wk+1)

)
. Moreover, one has

1
2∂t

∫
R3

(∂αWk+1)T S(Uk)∂αWk+1 dx

=1
2

∫
R3

(∂αWk+1)T

(
∂tS(Uk) +

∑
i

∂xi
(SAi)(Uk)

)
∂αWk+1 dx

+
∫

R3
(∂αWk+1)T S(Uk)∂α(S−1(Uk)Hk

+ b(Uk,fk)) dx +
∫

R3
(∂αWk+1)T Fα dx.

Up to time Tk, Uk takes its values in Ω2 on which S and SAi are smooth. One can bound the
derivatives of S and SAi at any order by a constant that depends on Ω2. One also uses the
Sobolev embedding Hs−1(R3) ↪→ L∞(R3) and lemma 2.1.13 to obtain the estimates

∥∂tUk∥L∞,Tk
≤ C(s)∥∂tUk∥Hs−1,Tk

≤ C(s,Ω2, R, U0, f0,w)TV(w),

∥∂xi
Uk∥L∞,Tk

≤ C(s)∥∂xi
Uk∥Hs−1,Tk

≤ C(s)
(
∥Uk − U0∥Hs,Tk

+ ∥U0 − Ū0∥Hs,Tk

)
≤ C(s,R,U0).
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So that ∥∥∥∥∥∂tS(Uk) +
∑

i

∂xi
(SAi)(Uk)

∥∥∥∥∥
L∞,Tk+1

≤ C(s,Ω2,R,U0,f0,w,TV(w)).

One now uses lemma 2.1.12 to obtain, for |α| ≤ s

Ai(Uk)∂xi
∂αWk+1 − ∂α

(
Ai(Uk)∂xi

Wk+1
)

=
(
(Ai

(
Uk
)

− Ai

(
Ū0
))

∂α∂xi
Wk+1 − ∂α

((
Ai

(
Uk
)

− Ai

(
Ū0
))

∂xi
Wk+1

)
.

According to the previous inequality, one has

∥Fα∥L2,Tk+1 ≤∥S(Uk)∥L∞,Tk+1C(s)
∑

i

(
∥∂α(Ai(Uk) − Ai(Ū0))∥L∞,Tk+1

× ∥∂xi
Wk+1∥Hs−1,Tk+1

+∥∂xi
Wk+1∥L∞,Tk+1∥Ai(Uk) − Ai(Ū0)∥Hs,Tk+1

)
≤C(s,Ω2,R,U0).

One has using lemma 2.1.10∥∥∥S(Uk)∂α(S−1(Uk)Hk
∥∥∥

L2,Tk+1

≤ ∥S(Uk)∥L∞,Tk

∑
i

∥∂α(Ai(Uk)∂xi
U0)∥L2,Tk

≤ C(s,Ω2)
∑

i

∥Ai(Uk) − Ai(Ū0)∥L∞,Tk
∥∂xi

U0∥Hs,Tk

+
∑

i

∥∂xi
U0∥L∞,Tk

∥Ai(Uk) − Ai(Ū0)∥Hs,Tk
+ C∥∂xi

U0∥Hs,Tk

≤ C(s,Ω2,R,U0).

It yields

∥S(Uk)∂α(b(Uk,fk))∥L2,Tk+1 ≤ C(s,R,f0,Ω2,w,TV(w)).

One now uses the estimate (2.30). For t ∈ [0,Tk+1], one obtains

∥∂αWk+1∥L2(t)

≤ C(Ω2)[∥∂αWk+1∥L2(0) + 1
2∥∂tS +

∑
i

∂xi
(SAi)∥L∞,Tk+1

∫ t

0
∥∂αWk+1∥L2(τ) dτ

+
∫ t

0

(
∥Fα∥L2 + ∥S(Uk)∂α(S−1(Uk)Hk)∥L2 + ∥S(Uk)∂α(b(Uk,fk))∥L2

)
dτ.

Then one gets

∥∂α Wk+1∥L2(t)

≤ ∥∂αWk+1∥L2(0) + C(s,Ω2,R, U0,f0)
∫ t

0
∥∂αWk+1∥L2(τ) dτ

+
∫ t

0
(C(s,Ω2,R,U0) + C(s,Ω2,R, U0) + C(s,U0,f0,w,TV(w),R, Ω2)) dτ.
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Summing for all |α| ≤ s these estimates, one ends up with

∥Wk+1∥Hs(t)

≤ C(Ω2)
(

∥Wk+1∥Hs(0) + C(s,Ω2,R,U0,f0)
∫ t

0
∥Wk+1 ∥Hs(τ) dτ

)
+ tC(s,R,Ω2,U0,f0,w,TV(w)).

Thanks to Gronwall’s lemma, one has for all t ∈ [0,T ] with T ≤ Tk+1

∥Wk+1∥Hs(t)
≤ C(Ω2)

(
∥Wk+1∥Hs(0) + TC(s,R,Ω2,U0,f0,w,TV(w))

)
eC(s,R,f0,U0,Ω2,w,TV(w))T .

Choosing T ≤ 1, and since Wk+1(x,0) = 0, one obtains the claim.

Lemma 2.1.15. The following inequalities hold for all T ∈ [0, inf(1,Tk+1))

sup
t∈[0,T ]

V k+1
M (t) ≤ VM(0) + C(Ω2,w, γ, U0)TV(w)T, (2.38)

sup
t∈[0,T ]

Xk+1
M (t) ≤ XM(0) + C(f0,Ω2,w, γ, U0)TV(w)T, (2.39)∥∥∥∥∫

R3
⟨fk+1⟩ dv

∥∥∥∥
L∞,T

≤ 23∥w∥L1∥f0∥L∞(VM(0) + C(Ω2,w, γ, U0)T )3. (2.40)

Proof. Recall the characteristic curves of the Vlasov equation

dXk+1

dt
(t; x,v,s) = Vk+1(t; x,v,s), (2.41)

Xk+1(s; x,v,s) = x, (2.42)
dVk+1

dt
(t; x,v,s) = −⟨∇xp(Xk+1(t; x,v,s),t)⟩, (2.43)

Vk+1(s; x,v,s) = v. (2.44)

One has, writting implicitly the equations (2.41) and (2.43),

Xk+1(t; x,v,s) = x +
∫ t

s
Vk+1(τ ; x,v,s) dτ, (2.45)

Vk+1(t; x,v,s) = v −
∫ t

s
⟨∇xpk(Xk+1(τ,x,v,s),τ)⟩ dτ. (2.46)

We recall the notations
Xk+1

M (t) = sup
(x,v)∈R3×R3,fk+1(t,x,v)>0

|x|,

V k+1
M (t) = sup

(x,v)∈R3×R3,fk+1(t,x,v)>0
|v|.

Then
Vk+1(0; x,v,t) = v −

∫ 0

t
⟨∇pk(Xk+1(τ ; x,v,t),τ)⟩ dτ,
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and
|v| ≤ Vk+1(0; x,v,t) +

∫ t

0
∥pk∥L∞TV(w) dτ.

One obtains
V k+1

M (t) ≤ VM(0) +
∫ t

0
∥pk∥L∞(τ)TV(w) dτ.

And it yields (2.38). One proceeds similarly for Xk+1
M . Using the formula (2.46), one has

x = Xk+1(0; x,v,t) +
∫ t

0
Vk+1(τ ; x,v,t) dτ

= Xk+1(0; x,v,t) + v
∫ t

0
dτ −

∫ t

0

∫ τ

t
⟨∇xpk(Xk+1(τ̃ ; x,v,t), τ̃)⟩ dτ̃ dτ,

so, using lemma 2.1.11

Xk+1
M (t) ≤ XM(0) + VM(0)t +

∫ t

0

∫ t

τ
∥pk∥L∞(τ̃)TV(w) dτ̃ dτ.

And one obtains (2.39).
Moreover, one has, with lemma 2.1.11∥∥∥∥∫

R3
⟨fk+1⟩ dv

∥∥∥∥
L∞,T

≤ ∥w∥L1

∥∥∥∥∫
R3

fk+1 dv
∥∥∥∥

L∞,T

≤ 23∥w∥L1∥fk+1∥L∞,T (V k+1
M )3

≤ 23∥w∥L1∥f0∥L∞(VM(0) + C(Ω2,w, γ, U0)TV(w)T )3.

We then obtain the main Proposition of this section:
Proposition 2.1.16. There exists T⋆ ∈ (0,1] which depends only on Ω1, Ω2, s, U0, w and f0
such that, for all k ∈ N, Tk ≥ T⋆.

Proof. From lemma 2.1.14, one has
sup

t∈[0,T ]
∥Uk+1 − U0∥Hs(t) ≤ TC(s,R,Ω2, U0, f0,w,TV(w))eC(s,R,f0,U0,Ω2,w,TV(w))T .

The right-hand-side of this inequality defines a continuous function of T independent of k, with
value 0 if T = 0. Therefore, for all k there exists Tk > T1 > 0 such that

sup
t∈[0,T ]

∥Uk+1 − U0∥Hs(t) ≤ T1C(s,R,Ω2, U0, f0,w,TV(w))eC(s,R,f0,U0,Ω2,w,TV(w))T1

≤ R.

For the same reasons, using lemma 2.1.15, for all k there exists T2, T3 and T4 in ]0,Tk) such
that

sup
t∈[0,T ]

V k+1
M (t) ≤ VM(0) + C(Ω2,w, γ, U0)TV(w)T2 ≤ 2VM(0),

sup
t∈[0,T ]

Xk+1
M (t) ≤ XM(0) + C(f0,Ω2,w, γ, U0)TV(w)T3 ≤ 2XM(0),∥∥∥∥∫

R3
⟨fk+1⟩ dv

∥∥∥∥
L∞,T

≤ 23∥w∥L1∥f0∥L∞(VM(0) + C(Ω2,w, γ, U0)T4)3

≤ 24∥w∥L1∥f0∥L∞VM(0)3.

Let T⋆ = min(T1,T2,T3,T4) then for all k ∈ N, Tk ≥ T⋆ > 0 and the bounds (2.25)-(2.28) are
verified.

48
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2.1.8 Convergence of the iterative process
The goal of this section is to prove

Proposition 2.1.17. We consider initial data such that (2.19)-(2.20) hold and the associated
sequences Uk, fk defined by (2.21)-(2.24). Let T⋆ given by Proposition 2.1.16.

Then one can find T⋆⋆ ∈ (0,T⋆) such that, for k ≥ 2,

∥Uk+1 − Uk∥L2,T⋆⋆
≤ 1

4∥Uk − Uk−1∥L2,T⋆⋆
+ 1

4∥Uk−1 − Uk−2∥L2,T⋆⋆
, (2.47)

∥fk − fk−1∥L2,T⋆⋆
≤ C(f0,Ω2,γ)TV(w)∥Uk−1 − Uk−2∥L2,T⋆⋆

. (2.48)

Proof. Let k ≥ 2. The function Uk+1 − Uk is solution of the system

S(Uk)∂t(Uk+1 − Uk) +
3∑

i=1
((SAi(Uk−1) − (SAi)(Uk)∂xi

(Uk+1 − Uk)

= b(Uk, fk) − b(Uk−1, fk−1) + Fk,

with
Fk = (S(Uk−1) − S(Uk))∂tUk +

3∑
i=1

((SAi(Uk−1) − (SAi)(Uk))∂xi
Uk.

Thanks to lemma 2.1.8, one can write

∥Uk+1 − Uk∥L2(t)

≤C(1
2∥∂tS(Uk) +

∑
i

∂xi
(SAi)(Uk)∥L∞,T⋆

∫ t

0
∥Uk+1 − Uk∥L2(τ) dτ

+
∫ t

0
(∥Fk∥L2(τ) + ∥b(Uk,fk) − b(Uk−1, fk−1)∥L2(τ)) dτ).

Then, by Gronwall’s lemma, inequalities (2.25)-(2.31) and the fact that S and SAi are smooth
on Ω2 which is compact, one has

∥Uk+1 − Uk∥L2(t) ≤Ce

(
C(Ω2)∥∂tS(Uk)+

∑
i

∂xi (SAi)(Uk)∥L∞,T⋆

)
T⋆

×
∫ t

0
(∥Fk∥L2(τ) + ∥b(Uk, fk) − b(Uk−1, fk−1)∥L2(τ) dτ

≤C(Ω2)eC(s,Ω2,R,U0,f0)T⋆T⋆

× (∥Fk∥L2,T⋆
+ ∥b(Uk,fk) − b(Uk−1,fk−1)∥L2,T⋆

).

The goal is then to obtain inequality (2.47).
To bound to right-hand-side of this inequality, one first notices that the first term verifies

∥Fk∥L2 ≤ C(s,Ω2,R,U0,TV(w))∥Uk − Uk−1∥L2,T⋆
. It remains to bound the term

∥b(Uk,fk) − b(Uk−1,fk−1)∥L2,T⋆

=

∥∥∥∥∥∥∥∥∥


ϱk
∫

R3(uk − v) · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
− ϱk−1 ∫

R3(uk−1 − v) · ∇x⟨fk−1⟩ dv

1 −
∫

R3⟨fk−1⟩ dv
ϱkuk

∫
R3(uk − v) · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
− ϱk−1uk−1 ∫

R3(uk−1 − v) · ∇x⟨fk−1⟩ dv

1 −
∫

R3⟨fk−1⟩ dv


∥∥∥∥∥∥∥∥∥

L2,T⋆

.
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One has, making use of lemma 2.1.11∥∥∥∥∥ϱkuk ·
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
− ϱk−1uk−1 ·

∫
R3 ∇x⟨fk−1⟩ dv

1 −
∫

R3⟨fk−1⟩ dv

∥∥∥∥∥
L2,T⋆

≤
∥∥∥∥∥(ϱkuk − ϱk−1uk−1) ·

∫
R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L2,T⋆

+
∥∥∥∥∥ϱk−1uk−1 ·

( ∫
R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
−
∫

R3 ∇x⟨fk−1⟩ dv

1 −
∫

R3⟨fk−1⟩ dv

)∥∥∥∥∥
L2,T⋆

≤ ∥ϱkuk − ϱk−1uk−1∥L2,T⋆

∥∥∥∥∥
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L∞,T⋆

+ ∥ϱk−1uk−1∥L∞

∥∥∥∥∥ 1
1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

∥∥∥∥∫
R3

∇x⟨fk − fk−1⟩ dv
∥∥∥∥

L2,T⋆

≤ C(f0)TV(w)
∥∥∥∥∥ 1

1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

∥Uk − Uk−1∥L2,T⋆

+ C(f0,R)TV(w)
∥∥∥∥∥ 1

1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

∥fk − fk−1∥L2,T⋆

≤ C(f0,w)TV(w)∥Uk − Uk−1∥L2,T⋆

+ C(f0,R,w)TV(w)∥fk − fk−1∥L2,T⋆
.

Similarly, because of the inequality∥∥∥∥∫
R3

(fk − fk−1)v dv

∥∥∥∥
L2,T⋆

≤ C(f0)∥fk − fk−1∥L2,T⋆
,

one has ∥∥∥∥∥ϱk
∫

R3 v · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
− ϱk−1 ∫

R3 v · ∇x⟨fk−1⟩ dv

1 −
∫

R3⟨fk−1⟩ dv

∥∥∥∥∥
L2,T⋆

≤ C(f0)TV(w)
∥∥∥∥∥ 1

1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

∥Uk − Uk−1∥L2,T⋆

+ C(f0,R)TV(w)
∥∥∥∥∥ 1

1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

∥fk − fk−1∥L2,T⋆

≤ C(f0,w)TV(w)∥Uk − Uk−1∥L2,T⋆
+ C(f0,R,w)∥fk − fk−1∥L2,T⋆

.

In the same way∥∥∥∥∥ϱkuk
∫

R3 v · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
− ϱk−1uk−1 ∫

R3 v · ∇x⟨fk−1⟩ dv

1 −
∫

R3⟨fk−1⟩ dv

∥∥∥∥∥
L2,T⋆

≤ C(f0)TV(w)
∥∥∥∥∥ 1

1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

∥Uk − Uk−1∥L2,T⋆

+ C(f0,R)TV(w)
∥∥∥∥∥ 1

1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

∥fk − fk−1∥L2,T⋆

≤ C(f0,w)TV(w)∥Uk − Uk−1∥L2,T⋆
+ C(f0,R,w)∥fk − fk−1∥L2,T⋆

.
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For the final term, one notices that∥∥∥∥∥ϱkuk
∫

R3 uk · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
− ϱk−1uk−1 ∫

R3 uk−1 · ∇x⟨fk−1⟩ dv

1 −
∫

R3⟨fk−1⟩ dv

∥∥∥∥∥
L2,T⋆

≤∥ϱkuk − ϱk−1uk−1∥L2,T⋆

∥∥∥∥∥
∫

R3 ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

∥∥∥∥∥
L∞,T⋆

∥uk∥L∞,T⋆

+ ∥ϱk−1uk−1∥L∞

∥∥∥∥∥ 1
1 − 24∥w∥L1VM(0)3f0

∥∥∥∥∥
L∞

× max(∥uk∥L∞,T⋆ , ∥uk−1∥L∞,T⋆)
∥∥∥∥∫

R3
∇x⟨fk − fk−1⟩ dv

∥∥∥∥
L2,T⋆

.

Moreover, because that for all k, Uk ∈ Ω2 which is relatively compact in (0, + ∞) × R3, the
quantity ϱk is bounded from below for all k by a constant that depends only on Ω2. So that
one has, for all k ≥ 2

∥uk∥L∞ =
∥∥∥∥∥ϱkuk

ϱk

∥∥∥∥∥
L∞

≤ C(Ω2)∥ϱkuk∥L∞ .

So ∥∥∥∥∥ϱkuk
∫

R3 uk · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
− ϱk−1uk−1 ∫

R3 uk−1 · ∇x⟨fk−1⟩ dv

1 −
∫

R3⟨fk−1⟩ dv

∥∥∥∥∥
L2,T⋆

≤ C(f0,w, Ω2)TV(w)∥Uk − Uk−1∥L2,T⋆
+ C(f0,R,w, Ω2)TV(w)∥fk − fk−1∥L2,T⋆

.

In the end

∥b(Uk,fk) − b(Uk−1,fk−1)∥L2,T⋆

≤ C(f0,w, Ω2)TV(w)∥Uk − Uk−1∥L2,T⋆
+ C(f0,R,w,Ω2)TV(w)∥fk − fk−1∥L2,T⋆

. (2.49)

The goal is then to control the term ∥fk − fk−1∥L2,T⋆
by ∥Uk−1 − Uk−2∥L2,T⋆

.
The function fk − fk−1 verifies

∂t(fk − fk−1) + v · ∇x(fk − fk−1) − ⟨∇pk−1⟩ · ∇v(fk − fk−1)
= (⟨∇pk−1⟩ − ⟨∇pk−2⟩) · ∇vfk−1.

Moreover fk(x, v,0) − fk−1(x, v,0) = 0, so

(fk − fk−1)(x,v,t) =
∫ t

0
B(Xk−1(τ ; x,v,t), Vk−1(τ ; x,v,t),τ) dτ,

with
B = (⟨∇pk−1⟩ − ⟨∇pk−2⟩) · ∇vfk−1.

One writes

∥fk − fk−1∥L2(t) ≤
∫ t

0
∥B∥L2(τ) dτ,
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then one has, using lemma 2.1.11, the following for B in the L2-norm,

∥B∥L2 ≤ ∥∇vfk−1∥L∞∥⟨∇pk−1⟩ − ⟨∇pk−2⟩∥L2

≤ ∥∇vfk−1∥L∞TV(w)∥(ϱk−1)γ − (ϱk−2)γ∥L2 .

One needs to bound ∇vfk in L∞. The function ∇vfk verifies

∂t(∇vfk) + v · ∇x∇vfk − ⟨∇xpk−1⟩ · ∇v∇vfk = −∇xf,

where · is understood as a matrix-vector product. Therefore, the characteristic method yields
the formula

∇vfk(x,v,t) =∇vf0(Xk−1(0; x,v,t), Vk−1(0; x,v,t))

−
∫ t

0
∇xfk(Xk−1(τ ; x,v,t), Vk−1(τ ; x,v,t),τ) dτ,

which yields, for t ∈ [0,T⋆)

∥∇vfk∥L∞(t) ≤ ∥∇vf0∥L∞ +
∫ t

0
∥∇xfk∥L∞(τ) dτ.

Similarly, the function ∇xfk verifies

∂t(∇xfk) + v · ∇x∇xfk − ⟨∇xpk−1⟩ · ∇v∇xfk = ⟨∇x∇xpk−1⟩ · ∇vfk.

Again, applying the method of characteristics

∇xfk(x,v,t) = ∇xf0(Xk−1(0; x,v,t), Vk−1(0; x,v,t))

+
∫ t

0

〈
∇x∇xpk−1(Xk−1(τ ; x,v,t),τ)

〉
∇vfk(Xk−1(τ ; x,v,t), Vk−1(τ ; x,v,t),τ) dτ,

and, with lemma 2.1.11

∥∇xfk∥L∞(t) ≤ ∥∇xf0∥L∞ +
∫ t

0

∥∥∥⟨∇x∇xpk−1⟩
∥∥∥

L∞
(τ)∥∇vfk∥L∞(τ) dτ

≤ ∥∇xf0∥L∞ + C(s, γ, R, Ω2,U0TV(w))
∫ t

0
∥∇vfk∥L∞(τ) dτ.

It is a consequence of Gronwall’s lemma that for t ∈ [0,T⋆[

∥∇xfk∥L∞(t) + ∥∇vfk∥L∞(t) ≤ C(s,R,f0,Ω2,γ,TV(w)).

Then, applying the mean value theorem to z 7→ zγ and using the fact that Ω2 is relatively
compact in Ω yields

∥B∥L2(t) ≤ ∥∇vfk−1∥L∞(t)TV(w) sup
z

∥γzγ−1∥L∞∥ϱk−1 − ϱk−2∥L2(t)

≤ C(s,R,f0,Ω2,γ,TV(w))TV(w)∥Uk−1 − Uk−2∥L2,T⋆
,

and

∥fk − fk−1∥L2(t) ≤ tC(s,R,f0,Ω2,γ,TV(w))TV(w)∥Uk−1 − Uk−2∥L2(t).
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Finally, using the inequality T⋆ ≤ 1,

∥b(Uk,fk) − b(Uk−1,fk−1)∥L2,T⋆

≤ C(f0,w, Ω2)TV(w)∥Uk − Uk−1∥L2,T⋆

+ C(s,R,f0,Ω2,γ,TV(w))TV(w)∥Uk−1 − Uk−2∥L2,T⋆
.

So that one obtains for all t ∈ [0,T⋆)

∥Uk−1 − Uk∥L2(t)
≤ C(R,f0,U0,Ω2,w,TV(w), γ)T⋆

(
∥Uk − Uk−1∥L2,T⋆

+ ∥Uk−1 − Uk−2∥L2,T⋆

)
.

This inequality is also valid if one replaces T⋆ by T⋆⋆ ∈ (0,T⋆). In particular, one can chose T⋆⋆

such that
C(R,f0,U0,Ω2,w,TV(w), γ)T⋆⋆ <

1
4 .

This concludes the proof.

2.1.9 Proof of Theorem 2.1.5
The proof of Theorem 2.1.5 is divided into three parts. First we prove the existence in the case
of smooth compactly supported initial data. Then we treat the uniqueness in this case. Finally
we explain how to modify the proof to obtain the result for general initial data.

Proof of Theorem 2.1.5.
1) Existence for smooth compactly supported initial data. From Proposition 2.1.17,
one has ∑

k∈N
∥Uk+1 − Uk∥L2,T⋆⋆

< +∞.

Then the sequence (Uk)k is a Cauchy sequence and converges in L∞(0,T⋆⋆; L2(R3)) to U. Since
Uk is smooth for all k, we have U ∈ C (0,T⋆⋆; L2(R3)). In the same way,∑

k∈N
∥fk+1 − fk∥L2,T⋆⋆

< +∞.

Then the sequence (fk)k is a Cauchy sequence and converges in L∞(0,T⋆⋆; L2(R3 × R3)) to f .
Since fk is smooth for all k, we have f ∈ C (0,T⋆⋆; L2(R3 × R3)). Thanks to the inequality
(2.25), one has ∥U − U0∥Hs,T⋆⋆ ≤ R and U ∈ L∞(0,T⋆⋆; Hs(R3)). In particular, thanks to
the Sobolev embedding Hs(R3) ↪→ C 1(R3) (remember that s > 3/2 + 1), one has that U ∈
L∞(0,T⋆⋆; C 1(R3)) takes its values in Ω2. For the same reasons, f ∈ L∞(0,T⋆⋆; Hs(R3 × R3)).

We emphasize however, that we do not yet have Uk C (0,T⋆⋆;Hs(R3))−→ U. To get the convergence
in C (0,T⋆⋆; C 1(R3)), we use an interpolation argument. By interpolation inequality between
Sobolev spaces, we have for all s′ ∈ (3/2 + 1,s):

∥Uk+1 − Uk∥Hs′ ,T⋆⋆
≤ C(s)∥Uk+1 − Uk∥s′/s

Hs,T⋆⋆
∥Uk+1 − Uk∥1−s′/s

L2,T⋆⋆

≤ C(s)
(
∥Uk+1 − U0∥s′/s

Hs,T⋆⋆
+ ∥Uk − U0∥s′/s

Hs,T⋆⋆

)
× ∥Uk+1 − Uk∥1−s′/s

L2,T⋆⋆

≤ C(s)2Rs′/s∥Uk+1 − Uk∥1−s′/s
L2,T⋆⋆

.
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So (Uk)k converges to U in C (0,T⋆⋆; Hs′(R3)) for s′ ∈ (3/2 + 1,s). By the Sobolev embedding
Hs′(R3) ↪→ C 1(R3), we conclude that

Uk C (0,T⋆⋆;C 1(R3))−→ U.

Then
(
∂xi

Uk
)

k
converges to ∂xi

U in C ([0,T⋆⋆]×R3). The same is true for
(∑

i Ai(Uk+1)∂xi
Uk
)

k
because the Ai are smooth. We now turn to the convergence of

b(Uk,fk) =


ϱk
∫

R3(uk − v) · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv
ϱkuk

∫
R3(uk − v) · ∇x⟨fk⟩ dv

1 −
∫

R3⟨fk⟩ dv

 .

The support in v of fk is uniformly bounded for all k, therefore, using that (fk) converges in
L∞(0,T⋆⋆; L2(R3×R3)) towards f and a Cauchy-Schwarz inequality, the sequences

(∫
R3 fk dv

)
k

and
(∫

R3 vfk
)

k
converge in L∞(0,T⋆⋆; L2(R3)) towards

∫
R3 f dv and

∫
R3 vf dv. Then, using the

inequality ∥∥∥∥∇x

∫
R3

⟨fk⟩ dv
∥∥∥∥

Hs
≤ TV(w)

∥∥∥∥∫
R3

fk dv
∥∥∥∥

Hs
,

we get that the sequences
(∫

R3 ∇x⟨fk⟩ dv
)

k
and

(∫
R3 v · ∇x⟨fk⟩ dv

)
k

converge in L∞(0,T⋆⋆; L2(R3)).
Using again the interpolation inequality between Sobolev spaces, we obtain that

(∫
R3 ∇x⟨fk⟩ dv

)
k

and
(∫

R3 v · ∇x⟨fk⟩ dv
)

k
converge in

L∞(0,T⋆⋆; Hs′(R3)) towards
∫

R3 ∇x⟨f⟩ dv and
∫

R3 v ·∇x⟨f⟩ dv and therefore in C ([0,T⋆⋆]×R3).
Furthermore, since

∫
R3⟨fk⟩ dv converges to

∫
R3⟨f⟩ dv in C ([0,T⋆⋆] × R3) (again using an inter-

polation argument) and using the inequality (2.28) we obtain that∥∥∥∥∥ 1
1 −

∫
R3⟨f⟩ dv

∥∥∥∥∥
L∞

< +∞,

and
(

1
1−
∫

R3 ⟨fk⟩ dv

)
k

converges to 1
1−
∫

R3 ⟨f⟩ dv
in C ([0,T⋆⋆] × R3). Finally b(Uk,fk) converges

towards b(U,f) in C ([0,T⋆⋆] × R3). We now prove that

∂tUk C (0,T⋆⋆;C 1(R3))−→ ∂tU.

Passing to the limit in D′ in the equation

∂tUk = −
3∑

i=1
Ai(Uk)∂xi

Uk+1 + b(Uk,fk),

we obtain that U solves

∂tU = −
3∑

i=1
Ai(U)∂xi

U + b(U,f), (2.50)

in D′. Since the right-hand-side defines a function in C ([0,T⋆⋆]×R3), we have ∂tU ∈ C ([0,T⋆⋆]×
R3) and U solves (2.50) in the classical sense.
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We now turn to the Vlasov equation. We pass to the limit in D′ in

∂tf
k+1 + v · ∇xfk+1 − ∇x⟨(ϱk)γ⟩ · ∇vfk+1 = 0.

We already know that (ϱk)k converges to ϱ in C ([0,T⋆⋆] × R3), so does
(
(ϱk)γ

)
k

towards ϱγ,
finally we have ∇x⟨(ϱk)γ⟩ converges towards ∇x⟨ϱγ⟩ in C ([0,T⋆⋆] × R3). So we can pass to the
limit in the sense of distribution and f is a solution in D′ of

∂tf + v · ∇xf − ∇x⟨ϱγ⟩ · ∇vf = 0. (2.51)

Now, using the fact that the characteristic curves of f are C 1 because U is C 1, we obtain that
f ∈ C 1

c ([0,T⋆⋆ ] × R3 × R3) and f is a solution of (2.51) in the classical sense. This concludes
the proof in the case where the initial data are smooth with compact support.

2) Uniqueness. For the uniqueness, we consider two solutions (ϱ1, ϱ1u1,f 1) and (ϱ2, ϱ2u2, f 2)
which are smooth in [0,T ]. Then, using the same algebra as in Proposition 2.1.17, one has for
some T⋆⋆ ∈ (0,T ),

∥U1 − U2∥L2,T⋆⋆
≤ 1

4∥U1 − U2∥L2,T⋆⋆
+ 1

4∥U1 − U2∥L2,T⋆⋆
,

∥f 1 − f 2∥L2,T⋆⋆
≤ C(Ω2,s,R,f0)∥U1 − U2∥L2,T⋆⋆

.

As a consequence, U1 = U2 and f 1 = f 2.

3) General initial data. We turn to the case where ϱ0 − 1 ∈ Hs(R3), u ∈ Hs(R3) and
f0 ∈ C 1

c (R3 × R3) ∩ Hs(R3 × R3). We introduce an approximation of the identity φεk
with

εk = 2−kε0, with ε0 small enough. Then we define Uk
0 = φεk

⋆ U0 and fk
0 = (φεk

⊗ φεk
) ⋆ f0,

where the convolution and tensor products are in (x,v). With such a choice, one has (see [110])∑
k∈N

∥Uk+1
0 − Uk

0∥L2 < +∞,
∑
k∈N

∥fk+1
0 − fk

0 ∥L2 < +∞.

The solution is then obtained by the same approximation scheme but we replace the initial
data by Uk+1

0 and fk+1
0 . The proof is then similar, except for two small modifications. Firstly,

one has to prove estimates on Uk − U0
0 instead of Uk − U0, this is where we need to chose ε0

small enough. Secondly, the estimates (2.47)-(2.48) are replaced by

∥Uk+1 − Uk∥L2,T⋆⋆
≤ 1

4∥Uk − Uk−1∥L2,T⋆⋆
+ 1

4∥Uk−1 − Uk−2∥L2,T⋆⋆
+ C∥Uk+1

0 − Uk
0∥L2 ,

and
∥fk − fk−1∥L2,T⋆⋆

≤ C(f0,Ω2,TV(w),γ)∥Uk−1 − Uk−2∥L2,T⋆⋆
+ ∥fk

0 − fk−1
0 ∥L2 .

2.2 Weak solutions
The construction of weak solutions for the thick spray model discussed in this thesis presents
different difficulties compared to the construction of strong solutions. Below, we briefly discuss
two axis of research for the construction of weak solutions. For now, the construction of weak
solutions is a problem that appears too challenging for these techniques.
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2.2.1 Construction of weak solutions for the regularized thick spray
model

In the introduction of this Chapter, we mentioned that in the original thick spray equa-
tions (4.1), the presence of the term ∇xp · ∇vf makes the construction of weak solutions a
challenging problem, because the standard theory can at most handle a force field in BV [3,4].

A natural question after introducing the system (4.4) is: Is it possible to construct weak
solutions of this system? Let’s have a look at the following Vlasov equation in 1D:

∂tf + v∂xf − ⟨∂xp⟩∂vf = 0.

Now, if for all t, p(t,·) is in BV ∩ C ∞, one has

⟨∂xp⟩(x) =
∫

R
w(x − y)∂xp(y) dy

=
∫ x+rp

x−rp

∂xp(y)dy

= p(x + rp) − p(x − rp).

Then if p(t,·) is in BV, we define the term ⟨∂xp⟩ by

⟨∂xp⟩ := τrpp − τ−rpp

where τy is the translation by y. Then one can write the Vlasov equation as

∂tf + v∂xf −
(
τrpp − τ−rpp

)
∂vf = 0.

In principle, one could then construct a weak solution of this equation, following [3].

2.2.2 Weak solutions for the thick spray model
Let us make some comments about the construction of weak solution for the thick spray model
without regularization (4.1). From the point of view of the applications, it is highly desirable
to be able to simulate shock waves in flows described by the thick spray system [64].

If f = 0, then (4.1) become the isentropic Euler equations, and then shock waves (that is,
solutions that are piecewise smooth with discontinuities) are described by weak solutions in the
sense of distribution [68].

If f is a given function, then the fluid part, which writes∂t(αϱ) + ∂x(αϱu) = 0
∂t(αϱu) + ∂x(αϱu2) + α∂xp = 0

is the same equations as the isentropic Euler equations for a single fluid in a nozzle of section
α [68]. Weak solutions in the sense of distribution are not appropriate for this system. Indeed,
the problem comes from the presence of the nonconservative product α∂xp. In the case where
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α and p are discontinuous, this product makes no sense in the framework of distributions. Dal
Masot, Le Floch and Murat proposed a theory to give a sense to such product [39]. This led
to numerical schemes specificly designed to tackle this kind of problems [1, 30, 33, 75, 98]. In
the following, we present some exploration work on how to define weak solutions for the thick
spray system and if the theory developed in [39] is suitable to handle this kind of problem.

Let us give a brief presentation of the theory developed in [39] for nonconservative product.
Typically, such nonconservative products are of the form g(u)∂xu, where g is a continuous func-
tion and u a piecewise smooth function. Formally, the aim is to give a definition to products
of the type Hδ where H is the heaviside function and δ is the dirac Delta distribution.

Let ϕ be a lipschitz continuous map ϕ : [0,1] × R × R → R satisfying the following prop-
erties

• ∀p−,p+ ∈ R, ∀s ∈ [0,1], ϕ(0,p−,p+) = p−, ϕ(1,p−,p+) = p+,

• ∃k > 0, ∀p−,p+ ∈ R, ∀s ∈ [0,1], |∂sϕ(s,p−,p+)| ≤ k|p− − p+| .

Then, the following definition of nonconservative products is based on this family ϕ

Definition 2.2.1. Let u : R → R be a function of bounded variation, so that its derivative
du
dx

defines a Radon measure, and g : R → R be a continuous function. Then, there exists a
unique real-valued bounded Borel measure µ on R characterized by the following properties :

1. If u is continuous on a Borel set B ⊂ R, then

µ(B) =
∫

B
g(u)du

dx
dx.

2. If u is discontinuous at a point x0, then

µ({x0}) =
∫ 1

0
g(Φ(s; u(x0−),u(x0+)))∂sΦ(s; u(x0−),u(x0+))ds.

We say that µ is the nonconservative product of g(u) by du
dx

and we denote

µ =
[
g(u)du

dx

]
ϕ

.

In the fluid part of the thick spray system (4.1), there is actually a way to get rid of the
product α∂xp. One possibility is to replace this equation by the conservation law of the total
momentum, then the fluid part writes in 1D

∂tn + ∂xq = 0, (2.52)

∂tq + ∂x

(
(q −

∫
fv dv)2

n
+ m⋆

∫
fv2 dv

)
+ ∂xp

(
nγ

αγ

)
= 0, (2.53)

with n = αϱ and q = αϱu + m⋆

∫
fv dv. If f is a given smooth function, this system is conser-

vative and it is possible to define weak solutions in the sense of distribution (with regularity
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in BV). However, there is still a problem for the Vlasov equation, which writes (ignoring the
friction which does not cause any issue)

∂tf + v∂xf − ∂xp∂vf = 0. (2.54)

The problem with the Vlasov equation seems to be even more difficult because f could have
discontinuities in x and v. In this case the product ∂xp∂vf is a nonconservative product and
the standard theory of distributions is not adapted to deal with this kind of products. In the
rest of this section, we investigate if the Definition 2.2.1 of a nonconservative product given
by [39] is a good tool to define weak solution for the system (4.1).

We propose the following definition of weak solution for the equation (2.54)

Definition 2.2.2. Let ϕ be a Lipschitz continuous path and p ∈ L∞(0, + ∞; BV(R)). We say
that f ∈ L∞(0, + ∞; L1

x,v ∩ L∞
x,v ∩ BVx) is a weak solution of the Vlasov equation

∂tf + v∂xf − ∂xp∂vf = 0,

if, for every ζ ∈ D((0, + ∞) × Rx × Rv),∫ +∞

0

∫
Rx

∫
Rv

(∂tζ(t,x,v) + v∂xζ(t,x,v)) f(t,x,v)dvdxdt−
∫ +∞

0

∫
Rx

∫
Rv

[∂xpf ]ϕ ∂vζ(t,x,v)dvdxdt = 0

A natural scenario that we would like to capture with the Definition 2.2.2 is the following:
A stream of particles hitting a shock wave, without enough kinetic energy to pass through it, so
the particles will bounce on the shock wave. Another similar situation is a stream of particles
accelerated by a shock wave catching it up. A prototype solution would be like this

f(t,x,v) = 1[σt,+∞[×[v1,+−σ,v2,+−σ](x,v) + 1[σt,+∞[×[v1,−−σ,v2,−−σ](x,v).

It turns out that Definition 2.2.2 does not include such profiles. This is the subject of the
following lemma:

Lemma 2.2.3. Let ϕ be a Lipschitz continuous path. Let f be a function of the form

f(x,v,t) = 1[σt,+∞[×[v1,+−σ,v2,+−σ](x,v) + 1[σt,+∞[×[v1,−−σ,v2,−−σ](x,v).

There exist ζ ∈ D(R3) such that∫
R3

(∂tζ(t,x,v) + v∂xζ(t,x,v)) f(t,x,v)dxdvdt −
∫

R3
[∂xpf ]ϕ ∂vζ(t,x,v)dxdvdt ̸= 0.

Proof. Let ζ ∈ D(R3), we write, thanks to the change of variable y = x − σt, w = v − σ:∫
R3

(∂tζ(t,x,v) + v∂xζ(t,x,v)) f(t,x,v)dxdvdt −
∫

R3
[∂xpf ]ϕ ∂vζ(t,x,v)dvdt (2.55)

=
∫

R3

(
∂tζ̃(t,y,w) + v∂y ζ̃(t,y,w)

)
g(y,w)dydwdt −

∫
R2

(∫ 1

0
f(ϕ(s),v,t)ϕ′(s)ds

)
∂v ζ̃(t,0 + ,v − σ)dvdt.

(2.56)

The first term yield∫
R3

∂tφ̃(t,y,w)g(y,w)dydwdt = −
∫

R2
φ̃(0,y,w)g(y,w)dydw = 0

58



2.2. Weak solutions

and ∫
R3

w∂yφ̃(t,y,w)g(y,w)dydwdt = −
∫

R2
wφ̃(t,0,w)g(0 + ,w)dwdt.

For the second term : ∫
R2

(∫ 1

0
f(ϕ(s),v,t)ϕ′(s)ds

)
∂v ζ̃(t,0 + ,v − σ)dvdt (2.57)

=
∫

R

∑
i

(∫ 1

0
f(ϕ(s),vi,t)ϕ′(s)ds

)
ζ̃(t,0 + ,vi − σ)dt (2.58)

We then choose ζ̃ so that only ζ̃(t,0,v − σ) for v1,+ < v < v2,+ is positive, which is always
possible. Then we have∫

R3
(∂tζ(t,x,v) + v∂xζ(t,x,v)) f(t,x,v)dxdvdt −

∫
R3

[∂xpf ]ϕ ∂vζ(t,x,v)dxdvdt (2.59)

= −
∫

R2
wζ̃(t,0,w)g(0 + ,w)dwdt < 0. (2.60)

This result can be extended if we replace f by a regularized version in v. From this result,
it seems that Definition 2.2.2 is not adequate to work with this kind of problem.
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Chapter 3 : Spectral theory for the linearized thick sprays equations

Summary
The aim of this chapter to study a linearized thick sprays model. We show analogy at the linear
level between the thick spray system (4.4) and the Vlasov Poisson equations of plasma physics.

This chapter is divided in two part. The first part corresponds to a joint work with Christophe
Buet and Bruno Després accepted in Communications in Mathematical Sciences [28]. We re-
cast the system as a linear Schrödinger equation and we prove that the corresponding operator
only has absolutely continuous spectrum. This proves that the system display an analog of the
Landau damping and one observes a decay of the acoustic energy. We also present numerical
illustration showing such effect.

The second part is based on the proceeding [62] accepted in ESAIM: Proceedings and Sur-
veys. The goal is to discuss instability properties of the linear thick spray model without
friction, still taking the Vlasov Poisson system as a guide for the analysis. We also present
numerical illustrations inspired by typical plasma physics test case.

3.1 Introduction
Collisionless motion of an electrostatic plasma is well-described by the Vlasov-Poisson system∂tf + v · ∇xf + E · ∇vf = 0

E = ∇∆−1 (
∫

R fdv) .
(3.1)

It is known since the seminal work of Landau [81] that such model can exhibit a decay of the
electric field for large times. This property of plasma, known today as Landau damping, has
received a lot of interest since then and there exists an extensive literature on the linear Landau
damping and more recently on the nonlinear Landau damping. See for example [40, 96, 113]
and the reference therein. See also [15,69,70] for similar effect in other systems.

In this work, we present new results of linear damping properties of solutions of a multiphase
model describing suspensions of particles in a underlying gas. Such complex flow is usually
refered to as a spray [45]. A typical system which describes this kind of spray writes


∂tf + v · ∇xf + ∇v · (Γf) = 0
∂t(αϱ) + ∇x · (αϱu) = 0
∂t(αϱu) + ∇x · (αϱu ⊗ u) + α∇xp(ϱ) = D⋆

∫
R3(v − u)f dv.

(3.2)

In (4.4), the first equation is a Vlasov-type equation and it describes the evolution of the
particles through a distribution function f = f(t,x,v) ≥ 0 in the phase space T3 ×R3 for times
t > 0. The second and third equations of (4.4) are the barotropic compressible Euler equations
and they describe the evolution of the density ϱ = ϱ(t,x) ≥ 0 and the velocity u = u(t,x) ∈ R3

of the fluid, for times t > 0 and x ∈ T3. The system (4.4) describes the so-called thick sprays
regime, in which the total volume occupied by the particles is not negligible compared to the
one of the fluid. This has the consequence that the fluid and the particles are coupled through
the following quantities. The first quantity is the volume fraction of the fluid α = α(t,x). It is
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linked to the f by the formula

α(t,x) = 1 − 4
3πr3

p

∫
R3

f(t,x, v) dv.

Here, we assume that α(t,x) ∈ [0,1]. This is in strong contrast with the thin sprays regime where
this quantity is assumed to be very closed to 1 and is therefore absent from the equations [12].
The radius of the particles rp > 0 is a constant in this work. The force field acting on the
particles Γ := Γ(t,x, v) is given by

Γ(t,x, v) = −∇xp(ϱ) − D⋆
4
3πr3

p

(v − u).

It is composed of two terms. The term −∇xp(ϱ) is a specific feature of thick sprays (it is absent
in the thin sprays regime). The term D⋆(v − u) is a drag force exerted on the particles by the
fluid. The retroaction of the drag force on the fluid appears in the third equation of (4.4)
through the term D⋆

∫
R3(v − u)f dv and is sometimes refered to as the Brinkman force. The

drag coefficient D⋆ ≥ 0 is usually given in a semi-empirical manner.
This model can be used to describe various physical phenomena at different length scales,

such as aerosols for medical use [24,25], the combustion in engines [5], aerosols in the atmosphere
[90], and also in astrophysics for the modelling of gas giants and exoplanets [66]. See also
[17,23,46,53,63,97,118].

In parallel with the system (3.25) where collisions are neglected, we neglect the drag force
in (4.4). Thus, D⋆ = 0 and the model problem that we will use in most of this work writes

∂tf + v · ∇xf − ∇xp(ϱ) · ∇vf = 0
∂t(αϱ) + ∇x · (αϱu) = 0
∂t(αϱu) + ∇x · (αϱu ⊗ u) + α∇xp(ϱ) = 0.

(3.3)

A description of our main results is the following.

(i) The first result investigates damping properties of small perturbations of homogenous
profiles at the linear level. It is described in the Theorem 3.2.1 below. We linearize the
system (3.3) around a reference solution and we analyze the decay of the perturbation
in L2 norm. We adapt ideas from plasma physics [34, 43, 44] and exploit the scattering
structure of the linearized system, rewriting it as a linear Schrödinger equation of the
form

d
dt

U = iHU.

The analysis is based on a careful analysis of the spectrum of the unbounded operator H.
The main difficulty is that the system at stakes is more complex than the Vlasov-Poisson
system, making the computations more tedious.

(ii) The second result is the computation of the rate of decay of the perturbation of the
linearized equations for analytic initial data. Mimicking computations done by Landau
[81] for the Vlasov-Poisson system, we obtain the dispersion relation of the linearized
system. This function is written as the sum of the dispersion relation of the Vlasov-Poisson
equation and an additional term which is specific to the model (3.3). The computation of
the dispersion relation is done in the Proposition 3.2.5 below. Then, we formally derive
an expansion for the perturbation of the density.
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Chapter 3 : Spectral theory for the linearized thick sprays equations

(iii) Finally we show numerical simulation illustrating the damping investigated in this pa-
per. We present schemes for the linearized and the nonlinear equations. The schemes are
derived from classical methods. It shows that the damping predicted by the linear equa-
tions is observed in the linear and the nonlinear simulations. We also present preliminary
formal and numerical results for the case with nonzero friction D⋆ > 0.

Overview of the Chapter. This chapter is organized as follows. In section 3.2.2, we prove
Theorem 3.2.1. In section 3.2.3, we show formal computation leading to the dispersion relation.
In section 3.3, we show numerical results illustrating Theorem 3.2.1, and we show that the
computation done in section 3.2.3 are verified numerically. Finally in section 3.4, we discuss
remaining open questions about this work.

3.2 Linear Damping
In this section, our aim is to analyze the damping properties of the system (3.3) in the lin-
ear regime. We follow a classical approach where we linearize the equations around gaussian
equilibrium. In contrast with plasma physics, the physical validity of such equilibrium is ques-
tionable for thick sprays, and should be justified. Another possibility is to use a more general
class of equilibrium as in [27]. In this work we limit ourselves to gaussian equilibrium since it
simplifies the equations and already brings valuable insight on the mathematical structure of
the system.

3.2.1 The linear thick spray model
We consider the following homogeneous solution of (3.3)

ϱ(t,x) = ϱ0 > 0,

u(t,x) = 0,

f(t,x, v) = f 0(v) := n0√
2π

e−|v|2/2,

where the density n0 =
∫

R3 f 0 dv is related to the volume fraction α0 by

1 − 4
3πr3

pn0 = α0 ∈ (0,1). (3.4)

Following [27], we perform the linearization
ϱ(t,x) = ϱ0 + εϱ1(t,x) + O(ε2)
u(t,x) = εu1(t,x) + O(ε2)
f(t,x,v) = f 0(v) + ε

√
f 0(v)f1(t,x, v) + O(ε2).

Dropping the quadratic terms and the subscripts, one obtains the following linear thick sprays
equations with τ(t,x) = −ϱ1(t,x)/ϱ2

0 and c0 =
√

p′(ϱ0)
α0ϱ0∂tτ = α0∇x · u + 4

3πr3
p∇x ·

∫
R3

v
√

f 0f dv

α0ϱ0∂tu = α0ϱ
2
0c

2
0∇xτ

∂tf + v · ∇xf − ϱ2
0c

2
0

√
f 0(v)v · ∇xτ = 0.

(3.5)
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3.2.2 Spectral theory for linear thick sprays
The main result of this section is the following.

Theorem 3.2.1. Let f 0 = f 0(v) satisfies (3.4), and initial condition (τini,uini,fini) ∈ L2(T3) ×
(L2(T3))3 × L2(T3 × R3) such that∫∫

T3×R3
fini(x, v) dvdx = 0,

∫
T3

τini(x) dx = 0,
∫

T3
uini(x) dx = 0.

Then as t → +∞ the solution (τ(t,·),u(t,·),f(t,·, ·)) of the linearized thick sprays equations (3.5)
with initial data (τini,uini,fini) verifies

∥τ(t)∥L2 + ∥u(t)∥L2 → 0,

and f(t, · ,·) converges weakly to 0 in L2(T3 × R3).

Remark 3.2.2. As the quadratic energy
∫

T3×R3 |f |2 dxdv +
∫

R3 |τ |2 + |u|2 dx is conserved,
Theorem 3.2.1 implies that all the acoustic energy is transferred to the particles. It will be
visible in Figure 3.3 where fast oscillations show up in the velocity variable. It is known in the
plasma community as filamentation.

The proof of Theorem 3.2.1 is done using tools from spectral theory [79, 84]. For the sake of
simplicity of the notations, we place ourselves in 1D, but the proof is valid in dimension d ∈ N∗.
After setting all constants to 1, the system (3.5) rewrites

∂tτ = ∂xu + ∂x

∫
R

v
√

f 0f dv

∂tu = ∂xτ

∂tf + v∂xf −
√

f 0(v)v∂xτ = 0.

(3.6)

We start from initial data (τini, uini, fini) satisfying∫∫
T×R

fini(x,v) dvdx = 0,
∫

T
τini(x) dx = 0,

∫
T

uini(x) dx = 0.

One can show that solutions of (3.6) conserve the quadratic energy

d
dt

(∫∫
T×R

|f |2 dvdx +
∫

T
|τ |2 + |u|2 dx

)
= 0. (3.7)

Functional setting We define the following functional spaces

L2
0(T) =

{
u ∈ L2(T),

∫
T

u(x) dx = 0
}

,

and
L2

0(T × R) =
{

f ∈ L2(T × R),
∫∫

T×R
f(x,v) dxdv = 0

}
,

and
ℓ2

0(Z) =
{
u ∈ ℓ2(Z), u0 = 0

}
,
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and the unbounded operator H : L2
0(T) × L2

0(T) × L2
0(T × R) −→ L2

0(T) × L2
0(T) × L2

0(T × R),
by

iH =


0 ∂x ∂x

∫
R v

√
f 0(v) · dv

∂x 0 0
v
√

f 0(v)∂x 0 −v∂x

 ,

with domain

D[H] = {(τ,u,f) ∈ L2
0(T)×L2

0(T)×L2
0(T×R), such that ∂xτ ∈ L2(T), ∂xu ∈ L2(T), v∂xf ∈ L2(T×R)}.

The system (3.6) rewrites as a linear Schrödinger equation

d
dt

U = iHU, U = (τ,u,f).

To study the operator H, we introduce the Fourier transform F : L2
0(T) −→ ℓ2

0(Z) defined by

F(f)(k) = fk :=
∫

T
e−ikxf(x) dx, ∀k ∈ Z.

In this context, the Fourier inverse F−1 : ℓ2
0(Z) −→ L2

0(T) is well-defined and F is a unitary
operator. Denote ℓ2

kL2
v = F(L2

0(T × R)). We work in the Hilbert space

X = ℓ2
0(Z) × ℓ2

0(Z) × ℓ2
kL2

v,

equipped with the hermitian product

⟨(τ, u,f),(σ, w, g)⟩X =
∑
k∈Z

τkσk +
∑
k∈Z

ukwk +
∑
k∈Z

∫
R

fk(v)gk(v) dv.

We introduce k the operator defined by (kτ)k = kτk for all k ∈ Z. Let H : X −→ X the
operator defined by

iH = ik


0 1

∫
R v

√
f 0(v) · dv

1 0 0
v
√

f 0(v)· 0 −v

 ,

with domain

D[H] =
{
(τ,u,f) ∈ X, such that kτ ∈ ℓ2(Z), ku ∈ ℓ2(Z), kvf ∈ ℓ2

kL2
v

}
.

By construction, H and H are unitarily equivalent. The system (3.6) rewrites in the Fourier
space, as

d
dt

U = iHU.

Proposition 3.2.3. The operators H and H are self adjoint.

Proof. Let us write H = H0 + K, with

H0 = k


0 1 0
1 0 0
0 0 −v

 , K = k


0 0

∫
R v

√
f 0(v) · dv

0 0 0
v
√

f 0(v)· 0 0

 ,
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with domain
D[H0] = D[H],

D[K] =
{

(τ,u,f) ∈ X, k
∫

R
v
√

f 0(v)f dv ∈ ℓ2(Z), kv
√

f 0(v)τ ∈ ℓ2
kL2

v

}
.

Let us show that (H0, D[H0]) is self-adjoint. A simple computation show that H0 is symmetric,
⟨H0U,V ⟩X = ⟨U,H0V ⟩X for all U, V ∈ D[H0]. It remains to show that D[H∗

0] ⊂ D[H0].
Let (σ,w,g) ∈ D[H∗

0]. By definition of the adjoint, for every (τ,u,f) ∈ D[H0], there exists
(s,ω,h) ∈ X such that

⟨H(τ,u,f), (σ,w,g)⟩ = ⟨(τ,u,f), (s,ω,h)⟩.
In particular, for

(τ,u,f) = k


w1J−n,nK

σ1J−n,nK

−vg1J−n,nK×[−m,m]

 ,

one has

⟨H0(τ,u,f), (σ,w,g)⟩ =
n∑

k=−n

k2 |wk|2 +
n∑

k=−n

k2|σk|2 +
n∑

k=−n

∫ m

−m
k2v2 |gk|2 dv

= ⟨(τ,u,f), (s,ω,h)⟩X

≤ ∥τ,u,f∥X∥s,ω,h∥X

=
 n∑

k=−n

k2 |wk|2 +
n∑

k=−n

k2|σk|2 +
n∑

k=−n

∫ m

−m
k2v2 |gk(v)|2 dv

1/2

∥s,ω,h∥X .

So  n∑
k=−n

k2 |wk|2 +
n∑

k=−n

k2|σk|2 +
n∑

k=−n

∫ m

−m
k2v2 |gk(v)|2 dv

1/2

≤ ∥s,ω,h∥X ,

and, taking the limit m,n → ∞, it yields

kw ∈ ℓ2(Z),

kσ ∈ ℓ2(Z),
−kvg ∈ ℓ2

kL2
v.

This show that H0 is self adjoint. Moreover, the operator K is clearly symmetric, and D[H0] ⊂
D[K]. Furthermore

∥K(τ,u,f)∥2
X =

∑
k∈Z

k2
∫

R
v2f 0(v)|τk|2 dv +

∑
k∈Z

k2
∣∣∣∣∫

R
v
√

f 0(v)fk(v) dv

∣∣∣∣2
≤
∫

R
v2f 0(v) dv

∑
k∈Z

k2|τk|2 + n0
∑
k∈Z

k2|uk|2 +
∫

R
f 0(v) dv

∑
k∈Z

∫
R

v2k2|fk(v)|2 dv

≤ n0∥H0(τ,u,f)∥2
X .

So the operator K is H0-bounded. Thanks to the hypothesis (3.4), n0 < 1 and the Kato-Rellich
theorem applies. One concludes that H is self adjoint on D[H] = D[H0]. Since H is unitary
equivalent to H, the operator (H, D[H]) is self adjoint.
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Since the operators H and H are self-adjoint, their spectrums can be decomposed in terms
of theory of measure [79,84]. It yields the following decomposition

X = Xac ⊕ Xsc ⊕ Xpp.

where Xac (resp. Xsc, resp. Xpp) corresponds to the absolutely continuous (resp. singular
continuous, resp. pure point) part of the spectrum. The pure point subspace Xpp is spanned
by the eigenvectors

Xpp = Span{φ ∈ X, Hφ = λφ for some λ ∈ R}.

On the other hand, the subspace Xac is characterized [71, 78, 105] by the existence of a dense
subset A ⊂ Xac such that

φ ∈ A ⇒
∥∥∥(H − λ − iε)−1 φ

∥∥∥
X

= O

(
1√
ε

)
. (3.8)

This characterisation is known as the Christensen criterion. Before moving on, we recall the
so-called Plemelj formula,

lim
ε→0

1
x + iε

= P.V
(1

x

)
− iπδ0, in D′.

Theorem 3.2.4. The operator H only has absolutely continuous spectrum.

Proof. Since H is unitary equivalent to H, if H only has absolutely continuous spectrum, then
the same statement holds for H. We verify the criterion (3.8) by means of a series of elementary
calculations.

Let A be the set of triplet of function (τ,u,f) such that τ , u ∈ ℓ2
0(Z) with finite support and

f ∈ ℓ2
kL2

v with finite support in k, and bounded in v. The set A is dense in X. Let us compute
(H − (λ + iε))−1 (τ,u,f) by solving for (σ,w,g) ∈ X the equation (H− (λ+ iε)(σ,w,g) = (τ,u,f)
which writes, for all k ̸= 0, v ∈ R

kwk + k
∫

R v
√

f 0(v)gk(v) dv − (λ + iε)σk = τk

kσk − (λ + iε)wk = uk

−vkgk(v) + kv
√

f 0(v)σk − (λ + iε)gk(v) = fk(v).

Taking the third equation, one has

gk(v) =
kv
√

f 0(v)
λ + iε + vk

σk − fk(v)
λ + iε + vk

. (3.9)

The second equation gives

wk = 1
λ + iε

(kσk − uk). (3.10)

Then, the first equation gives

k2

λ + iε
σk − k

λ + iε
uk + k

∫
R

v
√

f 0(v)gk(v) dv − (λ + iε)σk = τk.
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Using (3.9) and (3.10)

k2

(λ + iε)2 σk + k2

λ + iε
σk

∫
R

v2f 0(v)
λ + iε + vk

dv − σk

= k

(λ + iε)2 uk + 1
λ + iε

τk + k

λ + iε

∫
R

v
√

f 0(v)fk(v)
λ + iε + vk

dv.

Finally

σk = −1
1 − k2

(λ+iε)2 − k2

λ+iε

∫
R

v2f0(v)
λ+iε+vk

dv
(3.11)

×

 τk

λ + iε
+ k

(λ + iε)2 uk + k

λ + iε

∫
R

v
√

f 0(v)fk(v)
λ + iε + vk

dv


= − (λ + iε)2

(λ + iε)2 − k2 − k2(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

(3.12)

×

 τk

λ + iε
+ k

(λ + iε)2 uk + k

λ + iε

∫
R

v
√

f 0(v)fk(v)
λ + iε + vk

dv



= −
(λ + iε)τk + kuk + k(λ + iε)

∫
R

v
√

f0(v)fk(v)
λ+iε+vk

dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

. (3.13)

To satisfy the criterion (3.8), it is enough, from the formula (3.9)-(3.10), to bound σ and w in
ℓ∞. One obtains using Plemelj formula

σk = −
(λ + iε)τk + kuk + k(λ + iε)

∫
R

v
√

f0(v)fk(v)
λ+iε+vk

dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

−−→
ε→0

−
λτk + kuk + kλ

[
P.V

∫
R

v
√

f0(v)fk(v)
λ+vk

dv + iπλ
√

f 0(λ)fk(λ)
]

λ2 − k2 − kλ
[
P.V

∫
R

v2f0(v)
λ+vk

dv + iπλ2f 0(λ)
] .
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So σ is uniformly bounded in ε in ℓ∞(Z). In the same way, from (3.10)

wk = 1
λ + iε

−
k(λ + iε)τk + k2uk + k2(λ + iε)

∫
R

v
√

f0(v)fk(v)
λ+iε+vk

dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

− uk



= −
kτk + k2 ∫

R
v
√

f0(v)fk(v)
λ+iε+vk

dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

−
k2 uk

λ+iε

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk

− uk

λ + iε

= −
kτk + k2 ∫

R
v
√

f0(v)fk(v)
λ+iε+vk

dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

− uk

λ + iε

1 + k2

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv



= −
kτk + k2 ∫

R
v
√

f0(v)fk(v)
λ+iε+vk

dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

− uk

λ + iε

 (λ + iε)2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv



= −
kτk + k2 ∫

R
v
√

f0(v)fk(v)
λ+iε+vk

dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

− uk

 (λ + iε) − k
∫

R
v2f0(v)

λ+iε+vk
dv

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv



= −
kτk + k2 ∫

R
v
√

f0(v)fk(v)
λ+iε+vk

dv + uk

[
(λ + iε) − k

∫
R

v2f0(v)
λ+iε+vk

dv
]

(λ + iε)2 − k2 − k(λ + iε)
∫

R
v2f0(v)

λ+iε+vk
dv

.

Then one concludes using again Plemelj formula that

wk −−→
ε→0

−
kτk + P.V

∫
R

v
√

f0(v)fk(v)
λ+vk

dv + iπλ
√

f 0(λ)fk(λ) + uk

[
λ − kP.V

∫
R

v2f0(v)
λ+vk

dv − iπkλ2f 0(λ)
]

λ2 − k2 − kP.V
∫

R
v2f0(v)
λ+vk

dv − iπkλ2f 0(λ)
.

In the end, one obtains that w is uniformly bounded in ε in ℓ∞(Z). We then turn to an estimate
of g in ℓ2

kL2
v. The triangle inequality yields

∥g∥ℓ2
k

L2
v

≤
∥∥∥∥∥ kv

√
f 0σ

λ + iε + vk

∥∥∥∥∥
ℓ2

k
L2

v

+
∥∥∥∥∥ f

λ + iε + vk

∥∥∥∥∥
ℓ2

k
L2

v

.
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One has ∥∥∥∥∥ kv
√

f 0σ

λ + iε + vk

∥∥∥∥∥
2

ℓ2
k

L2
v

=
∑
k∈Z

∫
v∈R

∣∣∣∣∣ kv
√

f 0σk

λ + iε + vk

∣∣∣∣∣
2

dv

=
∑

k∈Z\{0}
k2σ2

k

∫
v∈R

v2f 0

(λ + vk)2 + ε2 dv

≤ ∥v2f 0∥L∞
v

∑
k∈Z\{0}

k2σ2
k

kε

≤
∥v2f 0∥L∞

v
∥kσ∥2

ℓ2

ε
,

and ∥∥∥∥∥ f

λ + iε + vk

∥∥∥∥∥
2

ℓ2
k

L2
v

=
∑

k∈Z\{0}

∫
v∈R

|fk(v)|2
(λ + vk)2 + ε2 dv

≤
∑

k∈Z\{0}

∫
v∈R

∥fk∥2
L∞

v

(λ + vk)2 + ε2 dv

≤ C

ε

∥∥∥k−1f1k ̸=0

∥∥∥2

ℓ2
k

L∞
v

.

Finally, it yields for ε small enough,

∀(τ,u,f) ∈ A, ∥(H − (λ + iε))−1(τ,u,f)∥X ≤ Cλ,τ,u,f√
ε

.

With Cτ,u,f,λ a constant that depends only on τ,u,f,λ. One concludes that H only has absolutely
continuous spectrum.

We can then conclude this section and prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Since the operator H has absolutely continuous spectrum and does not
have pure point and singular spectrum, it is a standard consequence of scattering theory [79,84]
that the solution (τ(t),u(t),f(t)) = e−itH(τini,uini,fini) converges weakly to 0. Furthermore it is
easy to see that

∀k, τk(t) → 0, uk(t) → 0.

Using the conservation of energy, one has
∑
k∈Z

(
|τk(t)|2 + |uk(t)|2

)
≤
∑
k∈Z

(
|τk(t)|2 + |uk(t)|2 +

∫
R

|fk(t,v)|2 dv
)

=
∑
k∈Z

(
|τk(0)|2 + |uk(0)|2 +

∫
R

|fk(0,v)|2 dv
)

.

Let ε > 0, then there exists N > 0 such that
∑

|k|>N

(
|τk(0)|2 + |uk(0)|2 +

∫
R

|fk(0,v)|2 dv
)

< ε.
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Then one writes∑
k∈Z

(
|τk(t)|2 + |uk(t)|2

)
=

∑
|k|≤N

(
|τk(t)|2 + |uk(t)|2

)
+

∑
|k|>N

(
|τk(t)|2 + |uk(t)|2

)
<

∑
|k|≤N

(
|τk(t)|2 + |uk(t)|2

)
+ ε.

Taking t → +∞,
lim

t→+∞

∑
k∈Z

(
|τk(t)|2 + |uk(t)|2

)
≤ ε, ∀ε > 0.

One concludes by Plancherel identity.

3.2.3 Dispersion relation
In this section, we perform a more quantitative analysis than in the previous section by assuming
that the initial data are analytic functions. For simplicity of the notations we take n0 = 1. The
conclusion (3.17) is that the damping is a combination of a decreasing exponential part and
an oscillatory part. This behaviour is qualitatively the same to the linear Landau damping in
plasma physics for the Vlasov-Poisson system, even if the physical nature of the force that acts
on the particles is different.

For a function τ ∈ L∞(R+; L2(T)), we define the Laplace-Fourier transform as

τ̃k(ω) :=
∫ +∞

0

∫
T

eiωte−ikxτ(t,x) dxdt, ℑ(ω) > 0.

Proposition 3.2.5. Let (τ,u,f) solutions of the linearized system (3.6), and τ̃k be the Fourier-
Laplace transform of τ . Then one has, for ℑ(ω) > 0

τ̃k(ω) = N (ω,k)
D(ω,k) ,

with

N (ω,k) = i

ω

τk(0) − k

ω
uk(0) +

∫
R

v
√

f 0(v)fk(0,v)
v − ω

k

dv

 ,

and

D(ω,k) = 1 − k2

ω2 +
[
1 + ω√

2πk

∫
R

e−v2/2

v − ω
k

dv

]
.

The function D is the dispersion relation of the linear system.

Remark 3.2.6. It is interesting to compare D to the dispersion relation of the linear Vlasov-
Poisson system

DVP(ω,k) = 1 + 1
k2

[
1 + ω√

2πk

∫
R

e−v2/2

v − ω
k

dv

]
.

We remark that

D(ω,k) = 1 − k2

ω2 + k2(DVP(ω,k) − 1) = 1 − k2 − k2

ω2 + k2DVP(ω,k).
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Proof. We consider the system (3.6) written for Fourier modes k ̸= 0.
∂tτk(t) = ikuk(t) + ik

∫
R

√
f 0fk(t,v)v dv

∂tuk(t) = ikτk(t)
∂tfk(t,v) + ikvfk(t,v) − ikv

√
f 0τk(t) = 0.

(3.14)

For bounded solutions of (3.14), the following Fourier-Laplace transforms are well-defined

τ̃k(ω) =
∫ +∞

0
eiωtτk(t) dt, ℑ(ω) > 0,

ũk(ω) =
∫ +∞

0
eiωtuk(t) dt, ℑ(ω) > 0,

f̃k(ω,v) =
∫ +∞

0
eiωtfk(t,v) dt, ℑ(ω) > 0, v ∈ R.

Multiplying the Vlasov equation by eiωt and integrating in t, (3.14) writes
−iωτ̃k(ω) = ikũk(ω) + ik

∫
R v

√
f 0(v)f̃k(ω,v) dv + τk(0)

−iωũk(ω) = ikτ̃k(ω) + uk(0)
(−iω + ikv)f̃k(ω,v) − ikv

√
f 0τ̃k(ω) = fk(0,v).

Then one has

−iωτ̃k(ω) =ikũk(ω) + ik
∫

R
v
√

f 0(v)f̃k(ω,v) dv + τk(0)

=ik

(
−ikτ̃k(ω) + uk(0)

iω

)
+ ik

∫
R

v
√

f 0(v)f̃(ω,v) dv + τk(0)

= − i
k2

ω
τ̃k(ω) + ik

∫
R

v
√

f 0(v)f̃k(ω,v) dv + τk(0) − k

ω
uk(0)

= − i
k2

ω
τ̃k(ω) + ik

∫
R

v
√

f 0(v)
fk(0,v) + ikv

√
f 0(v)τ̃k(ω)

−iω + ikv

 dv

+ τk(0) − k

ω
uk(0)

= − i
k2

ω
τ̃k(ω) + ikτ̃k(ω)

∫
R

ikv2f 0(v)
−iω + ikv

dv

+ τk(0) − k

ω
uk(0) + ik

∫
R

v
√

f 0(v)fk(0,v)
−iω + ikv

dv.

Then one has

τ̃k(ω) =
(

k2

ω2 − k

ω

∫
R

v2f 0(v)
v − ω

k

dv

)
τ̃k(ω) + i

ω

τk(0) − k

ω
uk(0) +

∫
R

v
√

f 0(v)fk(0,v)
v − ω

k

dv

 ,

which rewrites

τ̃k(ω) = N (ω,k)
D(ω,k) (3.15)
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with

N (ω,k) = i

ω

τ̂(0,k) − k

ω
û(0,k) +

∫
R

v
√

f 0(v)f̂0(k,v)
v − ω

k

dv


and

D(ω,k) = 1 − k2

ω2 + k

ω

∫
R

v2f 0(v)
v − ω

k

dv.

Furthermore, since∫
R

v2e−v2/2

v − ω
k

dv =
∫

R

v(v − ω
k
)e−v2/2

v − ω
k

dv + ω

k

∫
R

ve−v2/2

v − ω
k

dv = ω

k

∫
R

ve−v2/2

v − ω
k

dv

and ∫
R

ve−v2/2

v − ω
k

dv =
∫

R

(v − ω
k
)e−v2/2

v − ω
k

dv + ω

k

∫
R

e−v2/2

v − ω
k

dv

=
√

2π + ω

k

∫
R

e−v2/2

v − ω
k

dv.

One obtains that D writes

D(ω,k) = 1 − k2

ω2 +
[
1 + ω√

2πk

∫
R

e−v2/2

v − ω
k

dv

]
.

For all k ̸= 0, the function D(·,k) is analytic on the half-space ℑ(ω) > 0. One can define an
analytic continuation of D on C∗. Let Z be a function defined on C by

Z(ζ) =
√

πe−ζ2
(

i − 2√
π

∫ ζ

0
et2 dt

)
.

Then Z is analytic on C and ∀ℑ(ζ) > 0,

Z(ζ) = 1√
π

∫
R

e−v2

v − ζ
dv.

Therefore, one can do an analytic continuation of ζ 7→
∫

R
e−v2

v−ζ
dv on C. Then, the function

D(ω,k) can also be continued analytically on C∗ by the formula

D(ω,k) = 1 − k2

ω2 +
[
1 +

√
π√
2

ω

k
e− ω2

2k2

(
i − 2√

π

∫ ω√
2k

0
et2 dt

)]
.

The function N can also be continued analytically in the same manner, and then τ̃k(ω) is
continued analytically on C∗. At this point, we follow what is classically done in the plasma
physics community [111, 113] for the Vlasov-Poisson system and we assume that D only has
finitely many zeros (which seems reasonable to prove) and that they are all simple (a proof of
this fact seems much more difficult). So that the Laplace inversion theorem applies and one
has

τk(t) = 1
2iπ

∫ +∞+iγ

−∞+iγ
e−iωtτ̃k(ω) dω.
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One can use the residue Theorem to compute this integral. One obtains the following expansion

τk(t) =
∑
ωj

Res(τ̃k, ωj)e−iωjt. (3.16)

where the ωj are the roots of D, which is a finite set, and Res(τ̃k, ωj) is the residue of τ̃k at ωj.
We then obtain that the dominant term of this expansion decay exponentially. The expression
of D when the constant are not normalized to 1 (one must redo the computation of the section
3.2.3 with the system (3.5)) is

D(ω,k) = 1 − c2
0
k2

ω2 +
4πr3

pϱ0c
2
0

3α0

[
1 +

√
πω√
2k

e− ω2
2k2

(
i − 2√

π

∫ ω√
2k

0
et2 dt

)]
.

The ωj are the solutions of D(ω,k) = 0 for a given k. As all the terms in the sum (3.16) decay
exponentially fast, only the term corresponding to the ωj with the largest imaginary part will
remain for large time , and the others will quickly become negligible. Denote ωr = ℜ(ωj),
ωi = ℑ(ωj), and Res(τ̃k, ωj) = reiφ, one notices that there is alway a root of the form ωr + iωj

associated to reiφ and one of the form −ωr + iωi associated to re−iφ. Therefore, by considering
only the two roots with the largest ωi, one has

τk(t) ≈ reiφe−(ωr+iωi)t + re−iφe(−ωr+iωi)t = 2reωit cos(ωrt − φ). (3.17)

To compute the two roots with the largest imaginary part of D, we use a standard numerical
method such as a Newton’s scheme from the python library scipy. For example with 4

3πr3
p =

0.3, ϱ0 = 1 and k = 0.5, one obtains that the two roots with the largest imaginary part are

ω ≈ ±0.4969 − 0.1295i.

3.3 Numerical illustrations
In this section, we illustrate the results of Theorem 3.2.1 in dimension 1 + 1. We show results
on the linear and nonlinear equations. We consider a uniform discretisation of the phase space
T × R, with steps ∆x, dv. In all the numerical results, we chose rp so that 4

3πr3
p = 0.3.

3.3.1 Numerical methods
We describe here the numerical schemes used in the next section for the purpose of illustration.
We present two schemes. The first one is for the nonlinear problem, which is the most interesting
one in view of possible physical applications. The second one is for the linearized problem
because it is a direct illustration of the theoretical results.

3.3.1.1 Nonlinear equations

We start with the nonlinear equations
∂tf + v∂xf − ∂xp∂vf = 0
∂t(αϱ) + ∂x(αϱu) = 0
∂t(αϱu) + ∂x(αϱu2) + α∂xp = 0
p(ϱ) = ϱγ, γ = 1.4.

(3.18)
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We use a semi-Lagrangian method for the Vlasov equation and a Lax-Wendroff scheme for the
fluid part. Multiplying the Vlasov equation in (3.18) by v and integrating in v, then summing
with the momentum equation of the fluid, one sees that the fluid part of the equation can be
written in a conservative form

∂t(αϱ) + ∂x(αϱu) = 0
∂t

(
αϱu + 4

3πr3
p

∫
R

fv dv
)

+ ∂x(αϱu2) + ∂xp + ∂x

(4
3πr3

p

∫
R

v2f dv
)

= 0

∂tf + v∂xf − ∂xp∂vf = 0.

It writes
∂tU + ∂xF(U,f) = 0

with

U =
U1

U2

 :=
 αϱ

αϱu + 4
3πr3

p

∫
R fv dv


and

F(U,f) =
 αϱu

αϱu2 + p + 4
3πr3

p

∫
R fv2 dv

 =
 U2 − m⋆

∫
R fv dv

(U2− 4
3 πr3

p

∫
R fv dv)2

U1
+ Uγ

1
αγ +

∫
R fv2 dv

 .

The jacobian matrix of F with respect to U is

A(U,f) := ∇UF(U,f) =
 0 1

−(U2− 4
3 πr3

p

∫
R fv dv)2

U2
1

+ γUγ−1
1

αγ

2(U2− 4
3 πr3

p

∫
R fv dv)

U1

 . (3.19)

Proposition 3.3.1. The eigenvalues of the Jacobian A(U,f) are

λ± = u ±
√

p′(ϱ)
α

. (3.20)

Proof. It suffices to notice that A(U,f) writes

A(U,f) =
 0 1

c2 − u2 2u



with u =
(U2 − 4

3πr3
p

∫
R fv dv)

U1
and c2 = γUγ−1

1
αγ

. A simple standard computation shows the
desired result. Moreover, one has

c2 = γUγ−1
1

αγ
= γ(αϱ)γ−1

αγ
= γϱγ−1

α
= p′(ϱ)

α
.
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This allows us to use a classical hyperbolic numerical scheme to discretize the fluid part,
and to immediately obtain a scheme preserving the mass and the total momentum.

The numerical method to discretize the system (3.18) is described as follow: Given (Un,fn)
at a given time tn.

• Compute f ∗ by solving the free transport ∂tf + v∂xf = 0 with a semi-lagrangian scheme
during a timestep ∆t with initial condition fn.

• Compute fn+1 by solving ∂tf − ∂xp∂vf = 0 with a semi-lagrangian scheme during a
timestep ∆t with initial condition f ∗.

• Compute Un+1 by solving ∂tU + ∂xF(U,f) = 0 with a Lax-Wendroff scheme during a
timestep ∆t with initial condition (Un,fn+1).

The semi-Lagrangian method [35,112] is a classical method to discretize transport equations, so
we do not describe it here, only the Lax-Wendroff scheme used here is somehow non standard
and we describe it hereafter.

Given initial data (Un,fn+1), the quantity Un+1 is computed by the Lax-Wendroff scheme
[68]:

Un+1
j = Un

j − ∆t

2∆x
(F(Un

j+1, fn+1
j+1 ) − F(Un

j−1, fn+1
j−1 ))

+ ∆t2

2∆x2

(
An

j+1/2(F(Un
j+1, fn+1

j+1 ) − F(Un
j , fn+1

j )) − An
j−1/2(F(Un

j , fn+1
j ) − F(Un

j−1, fn+1
j−1 ))

)
,

where An
j+1/2 is the jacobian (4.9) evaluated at some average state:

An
j+1/2 = A

(
Un

j+1 + Un
j

2 ,
fn+1

j+1 + fn+1
j

2

)
.

As it is classically done in the hyperbolic community, we impose a CFL condition:

λ±
∆t

∆x
≤ 1

2 .

The dependency of λ with respect to α is λ = O

(
1√
α

)
as visible in Proposition 3.3.1. If α is

small, it could trigger very small time steps. Notice that λ is in 1/α so small value of α could
lead very small time step ∆t.

3.3.1.2 Linear equations

We start with the linearized equations
α0ϱ0∂tτ = α0∂xu + 4

3πr3
p∂x

∫
R

v
√

f 0f dv

α0ϱ0∂tu = α0ϱ
2
0c

2
0∂xτ

∂tf + v∂xf − ϱ2
0c

2
0

√
f 0(v)v∂xτ = 0.

(3.21)
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One notices that the variable v only acts as a parameter. A discretization in v yields
α0ϱ0∂tτ = α0∂xu + 4

3πr3
p∂x

∑
k

vk

√
f 0(vk)f(t,x,vk)dv

α0ϱ0∂tu = α0ϱ
2
0c

2
0∂xτ

∂tf(t,x,vk) + vk∂xf(t,x,vk) − ϱ2
0c

2
0

√
f 0(vk)vk∂xτ = 0, ∀k ∈ J0,NK

It can be recast as a linear system of conservations laws

∂tW + A∂xW = 0,

with

W =



α0ϱ0τ

α0ϱ0u

f(·, ·, v0)
...

f(·, ·, vN)


and A a constant matrix. We use a Lax-Wendroff scheme under the form [68]

Wn+1
j = Wn

j − ∆t

2∆x
A
(
Wn

j+1 − Wn
j−1

)
+ ∆t2

2∆x2 A2
(
Wn

j+1 − 2Wn
j + Wn

j−1

)
.

3.3.2 Numerical results
In this section we consider the nonlinear system (3.18) with initial data

ϱ(t = 0,x) = 1,

u(t = 0,x) = 0,

f(t = 0,x,v) = 1√
2π

(1 + ε cos(kx)
√

f 0(v))e−v2/2,

and the linear system (3.21),
τ(t = 0,x) = 0,

u(t = 0,x) = 0,

f(t = 0,x,v) = 1√
2π

cos(kx)e−v2/2.

The coefficient are ε = 0.001 and k = 0.5. The domain of computation [0, 4π] × [−10, 10] with
periodic boundary condition. Using (3.17), an approximation of τ(t,x) writes

τ(t,x) ≈ 4reωit sin(kx) cos(ωrt − φ).

As it is done in plasma physics [111, 113], this allows in our case to write the following family
of reference solutions

τref(t,x) = 4re−0.1295t sin(0.5x) cos(0.4969t − φ),

where r ∈ R is the amplitude and φ ∈ R is the phase.
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3.4. The case with friction

The numerical results obtained with the schemes described in section 3.3.1 are visible in
Figure 3.1 for the nonlinear case and in Figure 3.2 for the linear case for r = −6.5 and φ = 4.
One notices that the numerical solutions computed by both schemes are of the form predicted
by the linear theory. Moreover the expected rate of decay is observed with great accuracy,
both in the linear and nonlinear case. This indicates that the linear damping effect survives the
nonlinear effect of the nonlinear system. In Figure 3.3, one can see the strong oscillations in the
v-variable. This is a typical effect seen in plasma physics and it is usually called filamentation.
It is also an illustration of the weak convergence of the perturbation of the distribution function
to 0.
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Fig. 3.1: Decay of the acoustic energy computed with the nonlinear equations. In blue,
the numerical solution and in orange the solution predicted by the linear theory.

3.4 The case with friction
The introduction of a nonzero friction D⋆ > 0 is important in view of physical applications
[27]. It introduces an explicit dissipation mechanism in the equations. Since there is no such
mechanism in the Vlasov-Poisson equations, the way to generalise the mathematical analysis is
not obvious. In what follows, we present preliminary results on the problem for small friction.
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Fig. 3.2: Decay of the acoustic energy computed with the linear equations. In blue, the
numerical solution and in orange the solution predicted by the linear theory.

Following [27], the linearization of the system (4.4) with friction d⋆ = D⋆
4
3 πr3

p
> 0 yields


∂tτ = ∂xu + ∂x

∫
R

√
f 0ed⋆tfv dv

∂tu = ∂xτ + d⋆

∫
R v

√
f 0ed⋆tg dv − d⋆u

∫
R f 0 dv

∂tf + v∂xf −
√

f 0ed⋆tv∂xτ = d⋆

√
f 0ed⋆tvu − d⋆f + d⋆∂v(vf).

Applying the Fourier-Laplace transform, one gets
−iωτ̃k(ω) = ikũk(ω) + ik

∫
R

v
√

f 0f̃k(ω − id⋆) dv + τk(0)

−iωũk(ω) = ikτ̃k(ω) + d⋆

∫
R

v
√

f 0f̃k(ω − id⋆) dv − d⋆ũk(ω)
∫

R
f 0 dv + uk(0)

(−iω + ikv)f̃k(ω,v) = ikv
√

f 0τ̃k(ω − id⋆) + d⋆ũk(ω − id⋆)v
√

f 0 + d⋆v∂vf̃k(ω,v) + fk(0,v).

If one assumes that the coefficient d⋆ is small, another linearization procedure based on a Taylor
expansion with respect to d⋆ yields

τ̃k(ω − id⋆) = τk(ω) − id⋆∂ωτk(ω) + O(d2
⋆),
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3.4. The case with friction

with similar formula for ũk and f̃k. Injecting those expansions and dropping the quadratic
terms in d⋆, it yields

−iωτ̃k(ω) = ikũk(ω) + ik
∫

R
v
√

f 0f̃k(ω) dv + d⋆k
∫

R
v
√

f 0∂ωf̃k(ω) + τk(0)

−iωũk(ω) = ikτ̃k(ω) + d⋆

∫
R

v
√

f 0f̃k(ω) dv − d⋆ũk(ω)
∫

R
f 0 dv + uk(0)

(−iω + ikv)f̃k(ω,v) = ikv
√

f 0τ̃k(ω) − d⋆v
√

f 0∂ω τ̃k(ω) + d⋆ũk(ω)v
√

f 0 + d⋆v∂vf̃k(ω,v) + fk(0,v).

One obtains

f̃k(ω,v) =ikv
√

f 0τ̃k(ω)
ikv − iω

+ fk(0,v)
ikv − iω

+ d⋆

ikv − iω

[
ũk(ω)v

√
f 0 + v∂vf̃k(ω,v) − v

√
f 0∂wτ̃k(ω)

]
,

and

ũk(ω) =
− k

ω
τ̃k(ω) + i

ω
uk(0) − id⋆

ω

∫
R v

√
f 0f̃k(ω) dv

1 − id⋆

∫
R f0 dv

ω

= −kτ̃k(ω) + iuk(0) − id⋆

∫
R v

√
f 0f̃k(ω) dv

ω − id⋆

∫
R f 0 dv

.

Then f̃k(ω,v) writes (dropping quadratic terms in d⋆)

f̃k(ω,v) =ikv
√

f 0τ̃k(ω)
ikv − iω

+ fk(0,v)
ikv − iω

+ d⋆

ikv − iω

v
√

f 0

ω − id⋆

∫
R f 0 dv

[−kτ̃k(ω) + iuk(0)]

+ d⋆

ikv − iω

[
v∂vf̃k(ω,v) − v

√
f 0∂wτ̃k(ω)

]
.

For ũk, one has

ũk(ω) =
−kτ̃k(ω) + iuk(0) + d⋆k

∫
R

v2f0

ikv−iω
dvτ̃k(ω) − id⋆

∫
R

v
√

f0fk(0,v)
ikv−iω

dv

ω − id⋆

∫
R f 0 dv

.

For τ̃k, one has

−iωτ̃k(ω) =
−kτ̃k(ω) + iuk(0) + d⋆k

∫
R

v2f0

ikv−iω
dvτ̃k(ω) − id⋆

∫
R

v
√

f0fk(0,v)
ikv−iω

dv

ω − id⋆

∫
R f 0 dv

+ ik
∫

R

v2f 0

ikv − iω
dvτ̃k(ω) +

∫
R

v
√

f 0fk(0,v)
ikv − iω

dv

+ d⋆ik

w − id⋆

∫
R f 0 dv

∫
R

v2f 0

ikv − iω
dv [−kτ̃k(ω) + iuk(0)]

+ id⋆k
∫

R

v2√f 0∂vf̃k(ω,v)
ikv − iω

dv − id⋆k
∫

R

v2f 0

ikv − iω
dv∂ω τ̃k(ω)

+ ikd⋆
∂

∂ω

∫
R

v2f 0τ̃k(ω)
ikv − iω

dv + d⋆k
∂

∂ω

∫
R

fk(0,v)
ikv − iω

dv

+ τk(0).
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Chapter 3 : Spectral theory for the linearized thick sprays equations

Rewriting this equation, one gets a differential equation of the form

d⋆A(ω)∂wτ̃k + B(ω,d⋆)τ̃k + C(ω,d⋆) = 0,

where A,B,C are functions of ω. If d⋆ = 0, one recovers equation (3.15). One would need to
study this equation to see how the friction interacts with the damping mechanism. This is left
for further research.

We nevertheless show numerical illustration for small value of d⋆. The results have been
obtained with the nonlinear equations. We observe that for sufficiently small value of d⋆, the
behaviour of the numerical solution is similar to the previous results, see Figure 3.4. But, with
larger value of d⋆, we observe initially a damping phenomenon, which is replaced by the purely
oscillatory phenomenon, see Figure 3.5. For even larger value of d⋆, we observe an oscillatory
phenomenon, see Figure 3.6. The interpretation of those results with respect to the Lyapunov
functional constructed in [27] remains to be done.

3.5 Instabilities of the linearized system
This section is based on the proceeding [62] published in ESAIM: proceedings and surveys

3.5.1 The dispersion relation.
As in the Vlasov-Poisson system, we can characterize the linearly instable particle profiles by
the dispersion relation of the system. We look for exponentially growing modes of (3.5), i.e.
solutions of the form

f(t,x,v) = α(v)e−iωteikx, τ(t,x) = βe−iωteikx, u(t,x) = γe−iωteikx, (3.22)

with k ∈ Z, ω ∈ C with ℑm(ω) > 0, α ∈ L∞(R), β and γ ∈ R. Injecting this ansatz into
(3.5), one gets 

−iωβ = ikγ + i
∫

kv
√

f0(v)α(v) dv

−iωγ = ikβ

(−iω + ikv)α(v) = −iβ
kf ′

0(v)√
f0(v)

Then one obtains

α(v) = −βk

−ω + kv

f ′
0(v)√
f0(v)

, γ = −β

ω
k, (3.23)

and
−iωβ = −ik2 β

ω
− iβ

∫ k2v∂vf0(v)
kv − ω

dv.

In particular, one has the dispersion relation

k2

ω2 +
∫ f ′

0(v)
v − ω/k

dv = 1. (3.24)

Conversevely, if (3.24) holds for some k ∈ Z and ω ∈ C with ℑm(ω) > 0, then the modes
(3.22) with α and γ given by (3.23) are solutions of (3.5). We proved the following proposition
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Proposition 3.5.1. The linearized equations (3.5) have exponentially growing modes if and
only if there exists k ∈ Z and ω ∈ C with ℑm(ω) > 0 satisfying (3.24). In that case, α and γ
are given by (3.23) for any β ∈ R.

Dispersion relation in other kinetic equations. This situation is similar to the case of
the Vlasov-Poisson system [40,96,113]∂tf + v · ∇xf − ∇xφ · ∇vf = 0

−∆xφ =
∫

R fdv − 1.
(3.25)

Applying the same strategy to the linearized Vlasov-Poisson equations, one founds the disper-
sion relation

Z
(

ω

k

)
:=
∫ f ′

0(v)
v − ω/k

dv = k2 (3.26)

Denoting ℑ+ the upper half plane, a solution ω(k) of (3.26) exists if and only if Z(ℑ+) constains
a positive real number k2. The set Z(ℑ+) is bounded and its boundary is the curve

x 7→ PV
∫ f ′

0(v)
v − x

dv + iπf ′
0(x)

and this curve is bounded, starting and ending at the origin, and for k large enough, the
equation (3.26) has no solution. Therefore, in the case where the profile f0 leads to a solution
ω ∈ ℑ+ of (3.26), there is a finite number of exponentially growing modes. For the system
(3.5), the situation is quite different since the equation (3.24) can be rewritten as

ζ(z) := 1
z2 +

∫ f ′
0(v)

v − z
dv = 1, z ∈ C,

with z = ω/k. Therefore, if z = ω/k ∈ ℑ+ is a solution, then so is z = (nω)/(kn), with
n ∈ N∗. This situation also happen in other singular kinetic equations such as the Vlasov-
Benney equation (see [13]) ∂tf + v∂xf − ∂xV ∂vf = 0

V =
∫

R f dv,
(3.27)

for which the dispersion relation writes∫ f ′
0(v)

v − ω/k
dv = 1,

or this equation, which can be seen as a kinetic version of the incompressible Euler equation
(see [10, 72]) ∂tf + v∂xf − ∂xV ∂vf = 0∫

R f dv = 1.
(3.28)

for which the dispersion relation writes∫ f ′
0(v)

v − ω/k
dv = 0.
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3.5.2 Numerical illustrations
In this section, we show examples unstable equilibrium f0. The numerical illustrations are done
again by discretizing the nonlinear equations (3.3) with the method described in Section 3.3.1.
For the initial conditions, we take

ϱ(t = 0,x) = ϱ0

u(t = 0,x) = 0
f(t = 0,x,v) = (1 + ε cos(kx))f0(v).

with ϱ0 = 1, k = 0.5 and ε = 0.001.
All the initial conditions are inspired by typical plasma physics test case [50,51,59,112]. We

present analogy of two stream instability, bump on tail instability, weak and strong damping
with and without friction.

3.5.3 Two-stream instability
We consider here the case where

f(t = 0,x,v) = 1
2
√

2π

(
e

−(v−v0)2
2 + e

−(v+v0)2
2

)
(1 + ε cos(kx)), v0 = 2.5.

The computational domain is [0,4π]×[−6,6]. We impose both in the x- and v- direction periodic
boundary conditions. We take N = 256 grid point on the x and v direction. By analogy with
plasma physics [38, 61], we call this test "two-stream instability". The evolution of ∥ϱ − ϱ0∥L2

and ∥u∥L2 in time is plotted in Figure 3.10. One observes that at first,the quantities ∥ϱ − ϱ0∥L2

and ∥u∥L2 increase exponentially, as predicted by the linear theory. At some later time satura-
tion sets in and the solution enters the nonlinear regime. It seems that the nature of the linear
regime is that it is just a numerical artifact. Indeed, as the mesh is refined, the system enters
the nonlinear regime earlier. This is due to the fact that the scheme is able to capture higher
frequency mode earlier.

In Figure 3.9, one can see the apparition of vortex in the phase space distribution at t = 55.
Eventually, the vortex get bigger and bigger and this lead to the apparition of shock waves in
the fluid. The particles are then transported by the shock waves, which is visibled at t = 73.
At t = 75 two shock waves collide this leads to the merge of the two streams. At this point
there is a significant filamentation of the phase space distribution. The dispersion relation is
illustrated in Figure 3.8 for Vlasov-Poisson and the system (3.5). It appears that the set ζ(ℑ+)
is the whole complex plane.

3.5.4 Bump on tail instability
By analogy with plasma physics [50], we consider the case where

f(t = 0,x,v) = 1√
2π

(
0.8e−v2/2 + 0.2e−4(v−3)2(1 + 0.1 cos x)

)
,

on the domain [0,4π] × [−6,6]. We impose both in the x- and v- direction periodic boundary
conditions. There N = 512 grid point on the x and v direction.
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This corresponds to the situation where there is a uniform cloud of droplet, where 80% of
the mass is concentrated. Then a smaller beam of droplets of average velocity v0 = 3 enters.
As in the Vlasov-Poisson equations, this situation is an equilibrium of the system. However this
equilibrium is unstable, and there is a growth of the acoustic energy, resulting in the apparition
of small vortex with differents size in the particle phase space distribution. After this period
of increase, the acoustic energy apppears to stay constant afterwards. See Figure 3.12 and
Figure 3.11.

3.5.5 Strong damping
We consider here the case where the initial condition for the particle density is

f(t = 0,x,v) = 1√
2π

e−v2/2(1 + ε cos kx)

with ε = 0.5. The purpose of this test is to investigate the damping effect with a strong enough
perturbation so that the nonlinear effects comes into play. The result is in the Figure 3.13. At
first, one still observes damping of the acoustic energy. After some time, the nonlinear effects
kick in and the acoustic energy goes back up, followed by oscillations.

3.6 Perspective
Several remarks can be made about future works

• The proof of a nonlinear damping result seems extremely difficult. The tools used in [15,
96] are not suitable to deal with the loss of regularity of the system.

• Regarding the instabilities, one can think on generalizing the analysis done in [13] to the
linear thick spray model.

• It should be noticed that the result of this chapter are physically questionnable, because
the friction force is still the driving mechanism of most fluid-particles flow. However,
those result are still usefull from a numerical point of view to validate a numerical code.
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Fig. 3.3: Filamention or weak convergence of f −f0 in the nonlinear equations for different
times. In descending order, t = 0, t = 15, t = 30, t = 45.
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Fig. 3.4: Decay of the acoustic energy with friction for the nonlinear equations for D⋆ =
10−3. In blue, the numerical solution and in orange, the solution in the case with no
friction
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Fig. 3.5: Decay of the acoustic energy with friction for the nonlinear equations for D⋆ =
10−2. In blue, the numerical solution and in orange, the solution in the case with no
friction
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Fig. 3.6: Decay of the acoustic energy with friction for the nonlinear equations for D⋆ =
10−1. In blue, the numerical solution and in orange, the solution in the case with no
friction
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Fig. 3.7: Plot of the functions ζ(s) (left) and Z(s) in the case where f0(v) =(√
2π
)−1

e−v2/2. The image of the upper half complex plane is in green, and the im-
age of the real line is the black curve. Notice how 1 is not in the image of ζ.

Fig. 3.8: Plot of the functions ζ(s) (left) and Z(s) in the case where f0(v) =(
2
√

2π
)−1 (

e−(v−v0)2/2 + e(−v+v0)2/2
)

with v0 = 2.5. The image of the upper half complex
plane is in green, and the image of the real line is the black curve. Notice how 1 is in the
image of ζ.
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3.6. Perspective

(a) Particle phase space distribution at t = 1 (b) Particle phase space distribution at t = 55

(c) Particle phase space distribution at t = 73 (d) Particle phase space distribution at t = 74

(e) Particle phase space distribution at t = 75 (f) Particle phase space distribution at t = 80

(g) Particle phase space distribution at t = 88 (h) Particle phase space distribution at t = 89

Fig. 3.9: Two stream instability
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Fig. 3.10: Acoustic energy of the two stream instability
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Fig. 3.11: Acoustic energy of the bump on tail instability
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(a) Particle phase space distribution at t = 1 (b) Particle phase space distribution at t = 5

(c) Particle phase space distribution at t = 6 (d) Particle phase space distribution at t = 10

(e) Particle phase space distribution at t = 15 (f) Particle phase space distribution at t = 20

(g) Particle phase space distribution at t = 25 (h) Particle phase space distribution at t = 30

Fig. 3.12: Bump on tail instability
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(a) Particle phase space distribution at t = 1 (b) Particle phase space distribution at t = 10

(c) Particle phase space distribution at t = 20 (d) Particle phase space distribution at t = 30

(e) Particle phase space distribution at t = 40 (f) Particle phase space distribution at t = 50

(g) Particle phase space distribution at t = 40 (h) Particle phase space distribution at t = 50

Fig. 3.13: Strong damping
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Chapter 4 : A coupled Finite Volume/semi-Lagrangian method for thick sprays

Summary
This chapter is dedicated to the numerical discretization of a thick spray model. We present a
coupled method combining a Finite Volume scheme for the fluid phase, and a semi-Lagrangian
scheme for the dispersed phase. The focus is on the discretization of the dispersed phase, for
which we propose two different methods. The first one is a backward semi-Lagrangian method
based on cublic B-Spline interpolation. The second one is a conservative semi-Lagrangian
scheme known as Positive Flux Conservative. We also present two methods for taking into
account the close-packing limit of the particles in the model.

4.1 Introduction
In this chapter, we are interested in the numerical simulation of dense suspensions of particles
within a carrying fluid. The starting point of this work is the following fluid kinetic system

∂t(αϱ) + ∇x · (αϱu) = 0
∂t(αϱu) + ∇x · (αϱu ⊗ u) + α∇xp = D⋆

∫
R3

(v − u)f dv

∂tf + v · ∇xf + ∇v · (Γf) = 0
α = 1 − m⋆

∫
R3

f dv

m⋆Γ = −m⋆∇xp − D⋆(v − u)

(4.1)

The first two equations are modified isentropic Euler equations, while the third equation is
a Vlasov equation. The coupling between the two phases is done not only through a drag
force, but also through the volume fraction of the fluid α in the fluid equations and through
the presence of the pressure gradient −∇xp in the force field of the Vlasov equation. The
system (4.1) is a prototype for describing s dense flow of particles within a carrying gas, it is
sometimes refered to as a thick spray model [23, 53]. In this work, we only consider the case
where p(ϱ) = ϱγ, where γ > 1 is the adiabatic index. It is possible to consider the full Euler
system with energy transfer between the particle phase and the fluid phase [91]. For the sake
of simplicity, we limit ourselves to the barotropic case.

Traditionaly, the numerical discretization of this kind of fluid-particle coupling is done with
a Particle-In-Cell (PIC) method for the Vlasov equation [5, 6, 11, 49, 91]. The PIC method has
the primary advantage of only discretizing the physical space x and not the velocity space v.
This drastically reduces the computational cost of a direct discretization of the Vlasov equation.
Indeed, the primary computational challenge comes from the fact that the distribution function
f lives in an up to six-dimensional phase space. However, particle methods are known to suffer
from numerical noise that decreases very slowly, as the square root of the number of particles.
They are also known to be highly sensitive to sampling errors.

Recently, especially in the plasma physics community, Eulerian methods for the Vlasov
equation have been developed with remarkable success [21, 35, 57–60, 88, 114]. Due to the
substantial increase in computational power, 4D simulation can now be performed routinely on
high performance computing (HPC) systems.

In this chapter, we present a numerical method for the discretization of thick sprays, based
on semi-Lagrangian method for the Vlasov equation, and a Finite Volume method for the fluid
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phase [18,20]. A point of interest in this work is to take into account the close-packing limit in
the system, characterized by a state where the particle density reaches a maximum.

4.1.1 Conservative form
If one multiplies the Vlasov equation by m⋆v and integrates with respect to v, one obtains the
balance law for the momentum of the particles

∂t

∫
R3

m⋆vf dv + ∇x ·
∫

R3
m⋆v ⊗ vf dv =

∫
R3

m⋆Γf dv. (4.2)

Adding (4.2) and the balance law of the momentum of the fluid, one obtains the equation for
the total momentum of the system

∂t

(
αϱu + m⋆

∫
R3

vf dv
)

+ ∇x ·
(

αϱu + m⋆

∫
R3

v ⊗ vf dv
)

+ ∇xp = 0. (4.3)

This equation is totally conservative, which is not the case for the fluid momentum balance
law, as it contains a nonconservative product α∇xp. This term can induce additional difficulty
from a numerical point of view [1,98]. For this reason, we chose to consider the system written
under the form

∂t(αϱ) + ∇x · (αϱu) = 0,

∂t (αϱu + m⋆

∫
R3 vf dv) + ∇x · (αϱu + m⋆

∫
R3 v ⊗ vf dv) + ∇xp = 0,

∂tf + v · ∇xf + ∇v · (Γf) = 0.

(4.4)

The fluid phase is rewritten in terms of the conserved variables n := αϱ, q := αϱu +
m⋆

∫
R3 vf dv,

∂tn + ∇x · (q − m⋆

∫
R3 vf dv) = 0,

∂tq + ∇x ·
(

(q − m⋆

∫
R3 vf dv)⊗2

n
+ m⋆

∫
R3

v ⊗ vf dv

)
+ ∇xp

(
n

α

)
= 0.

(4.5)

4.1.2 Close-packing limit.
By close-packing limit, we refer to the configuration where the maximal density for the particles
is reached, which typically corresponds to the case where the particles are packed on top of
each other. The close-packing of particles is a part of a larger family of congestion phenomena
in fluid equations. The study of such phenomena represents a prolific area of the literature,
see [41,94,100,101,108] and the references therein. The system (4.1) does not take into account
the modelling of close-packing limit. We would like to modify the model (4.1) so that, given
a lower bound 0 ≤ α⋆ < 1 and assuming that the initial data verifies α(t = 0,·) > α⋆, the
solutions preserve the bound α(t,·) > α⋆ for all t > 0. A priori, the system (4.1) does not verify
this property. An interesting case is α⋆ = 0, meaning that we are interested in the positivity of
the fluid volume fraction. In [27], the following result on the positivity of the volume fraction
α is proved for the full Euler system.

Proposition 4.1.1 ( [27]). Assume that a solution of the system (4.1) is defined on the whole
space R3 and is smooth on [0,Tend) for some Tend > 0. We assume that
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• For all (x,v) ∈ R3 × R3, f(0,x, v) > 0.

• One has 0 < ϱ− = inf
x∈R3

ϱ(0,x) ≤ ϱ+ = sup
x∈R3

ϱ(0,x) < +∞.

• One has −∞ < S− = inf
x∈R3

S(0, x).

• One has 0 < α− = inf
x∈R3

α(0,x) ≤ 1.

We assume the following regularity of the velocity variables

u ∈ W 1,∞([0,Tend) × R3),
∫

R3 fv dv∫
R3 f dv

∈ L∞([0,Tend) × R3).

We finally assume that the pressure vanishes at infinity, that is for all ε > 0, there exists A > 0
such that

0 < p(t,x) = (γ − 1)ϱ(t,x)e(t,x) < ε, for 0 ≤ t < Tend and |x| > A.

Then, there exists a constant C > 0 depending on Tend, ϱ+, ϱ−, α−, S−, A (corresponding
to ε = 1), ∥u∥W 1,∞([0,Tend)×R3) and

∥∥∥∥∫ fv dv∫
f dv

∥∥∥∥
L∞([0,Tend)×R3)

so that the following estimate holds :

0 < C ≤ α(t,x) ≤ 1, t ∈ [0,Tend), x ∈ R3.

So for strong solutions, the positivity of the fluid volume fraction is guaranteed. However,
nothing is said in the case solutions that contain discontinuities, such as shock waves, which
are of paramount interest for the applications. In the remaining of this work, we assume that
α⋆ > 0. In the literature, multiple ways to model the close-packing limit can be found.

For instance, a possible way [6,20] to modify the Vlasov equation is to add a pressure term
in the force field Γ

m⋆Γ = D⋆(u − v) − m⋆∇xp − 1
1 − α

∇xπ(α),

The function π : [0,α⋆) → [0, + ∞) is required to satisfy π(0) = 0 and limα→α⋆ π(α) = +∞.
Another possibility, found for instance in [64] is to modify the free transport operator directly:

∂tf + ∇x · (vf − π(α)∇vf) + ∇v · (Γf) = 0.

Our first proposition to implement close-packing effects in the model (4.4) is to modify Vlasov
equation

∂tf + ∇x · (vf − ∇xπf) + ∇v · (Γf) = 0. (4.6)

In the literature [100], it is common to give a formula for π, which is mainly of empirical nature.
A typical formula is

π(α) = ε

(
αf

α⋆ − αf

)β

, β > 1.

The coefficient ε > 0 is usually taken small. Its role is to make π negligible when αf is not
very close to α⋆. The coefficient β > 1 is given empirically. This kind of expression for π
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corresponds to so-called soft congestion models [100]. The idea is that the singular pressure π
acts as a barrier that prevents the particle volume fraction from becoming too big.

When ε → 0, the singular pressure π tends to a limit pressure π∞ such that

(α − α⋆)π∞ = 0, α ≥ α⋆, π∞ ≥ 0.

and the corresponding models that use this type of pressure are known as hard congestion
models [100]. The link between the hard and soft models is interesting from a numerical point
of view. The hard limit is difficult to handle because of the sharp unknown interface between
the free domain (where π∞ = 0) and the congested domain. One can instead use the soft
model with small ε to approximate the hard model [41]. In this work, we only consider the
case ε > 0. Our second proposition to take into account the close packing limit is purely of
numerical nature. The idea is to introduce a correction procedure in the numerical scheme that
imposes the bound α ≥ α⋆. The correction procedure we propose is inspired by works done
in [93,94,108] on the modeling of crowd motion.

To finish this section, let us write the two systems that we will study. We recall that the
conserved variables are n = αϱ, q = αϱu + m⋆

∫
vf dv. The original system without packing

pressure π is

∂tn + ∇x · (q − m⋆

∫
vf dv) = 0

∂tq + ∇x ·
(

(q − m⋆

∫
vf dv)⊗2

n
+ m⋆

∫
v ⊗ vf dv

)
+ ∇xp

(
n

α

)
= 0

∂tf + ∇x · (vf) + ∇v · (Γf) = 0
α = 1 − m⋆

∫
R3

f dv

m⋆Γ = −m⋆∇xp − D⋆(v − u),

(4.7)

that we will refer to as the "original model". Then, the system with added packing pressure

∂tn + ∇x · (q − m⋆

∫
vf dv) = 0

∂tq + ∇x ·
(

(q − m⋆

∫
vf dv)⊗2

n
+ m⋆

∫
v ⊗ vf dv − m⋆∂xπ

∫
fv dv

)
+ ∇xp

(
n

α

)
= 0

∂tf + ∇x · [(v − ∇xπ(α))f ] + ∇v · (Γf) = 0
α = 1 − m⋆

∫
R3

f dv

m⋆Γ = −m⋆∇xp − D⋆(v − u)

π(α) = ε

(
αf

α⋆ − αf

)β

, β > 1,

(4.8)

and we will refer to it as the "soft model".

4.2 Properties of the models
In this section, we recall some properties of the fluid phase and of the Vlasov equations that
are useful for the numerical discretization. For the sake of simplicity, we restrict ourselves to
the 1D case.
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4.2.1 Fluid part

4.2.1.1 Original system.

We will consider only an isentropic gas law, where the pressure is given by

p(ϱ) = ϱγ = nγ

αγ
.

The fluid part of the system writes

∂tU + ∂xF(U,f) = 0,

with

U =
n

q

 ,

and

F(U,f) =
 αϱu

αϱu2 + p + m⋆

∫
R fv2 dv

 =

 q − m⋆

∫
R fv dv

(q − m⋆

∫
R fv dv)2

n
+ nγ

αγ
+
∫

R fv2 dv

 .

The Jacobian matrix of F with respect to U is

A(U,f) := ∇UF(U,f) =

 0 1
−(q − m⋆

∫
R fv dv)2

n2 + γnγ−1

αγ

2(q − m⋆

∫
R fv dv)

n

 . (4.9)

We know from Proposition 3.3.1 that the eigenvalues of the matrix A(U,f) are

λ± = u ±
√

p′(ϱ)
α

.

4.2.1.2 Soft congestion system.

For the soft congested system, the total momentum equation is slightly different because of the
added pressure term π.

∂t

(
αϱu + m⋆

∫
R

fv dv
)

+ ∂x

(
αϱu2 + p + m⋆

∫
R

v2f dv − m⋆∂xπ
∫

R
fv dv

)
= 0.

The fluid part of the system then writes

∂tU + ∂xF(U,f) = 0,

with

U =
n

q

 :=
 αϱ

αϱu + m⋆

∫
R fv dv

 ,
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and

F(U,f) =
 αϱu

αϱu2 + p + m⋆

∫
R fv2 dv − m⋆∂xπ

∫
fv dv

 (4.10)

=
 q − m⋆

∫
R fv dv

(q−m⋆

∫
R fv dv)2

n
+ nγ

αγ + m⋆

∫
R fv2 dv − m⋆∂xπ

∫
fv dv

 . (4.11)

The jacobian of F with respect to U is the same so the eigenvalues of the system also write

λ± = u ±
√

p′(ϱ)
α

.

4.2.2 Particle phase
Let ϱ and u be two given smooth functions. Let us consider first the original system (4.7) in
dragless case D⋆ = 0. The Vlasov equation writes

∂tf + v∂xf − ∂xp(ϱ)∂vf = 0. (4.12)

The Vlasov equation admits a solution, given by the method of characteristics

f(t,x,v) = f0(X(0; t,x,v), V (0; t,x,v)), (4.13)

where the characteristics curves X and V are solutions of the following system of ODE
d
ds

X(s; t,x,v) = V (s; t,x,v), (4.14)

X(t; t,x,v) = x, (4.15)
d
ds

V (s; t,x,v) = −∂xp (s,X(s; t,x,v)) , (4.16)

V (t; t,x,v) = v. (4.17)

When D⋆ > 0 the Vlasov equation of the system (4.1) can be rewritten in the following non-
conservative form

∂tf + v∂xf − ∂xp(ϱ)∂vf + D⋆(u − v)∂vf = D⋆f. (4.18)

The solution can still be computed by the method of characteristics:

f(t,x,v) = f0(X(0; t,x,v), V (0; t,x,v))eD⋆t, (4.19)

where the characteristics curves X and V are solutions of the following system of ODE
d
ds

X(s; t,x,v) = V (s; t,x,v), (4.20)

X(t; t,x,v) = x (4.21)
d
ds

V (s; t,x,v) = −∂xp (s,X(s; t,x,v)) + D⋆ (u (s,X(s; t,x,v)) − V (s; t,x,v)) , (4.22)

V (t; t,x,v) = v. (4.23)

Those formulae are the basic bricks of the semi-Lagrangian scheme. We deduce from the
formula (4.19) the following consequences
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• One has
min
x,v

f(0,x,v)eD⋆t ≤ f(t,x,v) ≤ max
x,v

f(0,x,v)eD⋆t.

This expresses the general tendency of the drag force: the velocities of the particles tend
to align with the velocity of the ambient fluid u.

• When p ̸= 1, the Lp norms of f are not conserved: ∥f(t)∥Lp
x,v

= eD⋆(1−1/p)t∥f(0)∥Lp
x,v

.
This is in contrast with plasma physics models such as the Vlasov-Poisson system where
all the Lp norms are conserved (in fact, for every smooth function β, the integrals of
β(f) are conserved). An interesting consequence is that the L2 norm cannot be used to
evaluate the numerical diffusion. This is due to the fact that Γ is not divergence-free
in the velocity variable v. This is unusual compared to plasma physics models such as
Vlasov-Poisson equations or Vlasov-Maxwell equations, see [21,50,112].

For the soft congested system (4.8), The Vlasov equation writes

∂tf + v∂xf − ∂x(∂xπ(α)f) − ∂xp(ϱ)∂vf + D⋆(u − v)∂vf = D⋆f. (4.24)

The extra term introduces additionnal difficulty because the characteristic curves can no longer
be computed explicitly. The characteristic curves X and V are solutions of the following system
of ODE

d
ds

X(s; t,x,v) = V (s; t,x,v) − ∂xπ(α(s,X(s; t,x,v))), (4.25)

X(t; t,x,v) = x, (4.26)
d
ds

V (s; t,x,v) = −∂xp (s,X(s; t,x,v)) + D⋆ (u (s,X(s; t,x,v)) − V (s; t,x,v)) , (4.27)

V (t; t,x,v) = v. (4.28)

4.3 Numerical methods

In this section, we present the numerical methods used to discretize systems (4.1) and (4.8). The
main idea consists of combining a Finite Volume method for the barotropic Euler equations, for
which we only consider a simple Rusanov flux [68] and a semi-Lagrangian method for the Vlasov
equation. Two different semi-Lagrangian scheme are used. The first one is a semi-Lagrangian
method based on cubic Spline interpolation [21] that we will refer to as the BSPL scheme. The
second one is a conservative semi-Lagrangian method known as Positive Flux Conservative [60]
that we will refer to as the PFC scheme.

We introduce the computational domain [xmin, xmax] × [vmin,vmax]. The lenght of the space
domain is denoted L = xmax − xmin. We introduce a space discretization made of Nx cells
with constant step ∆x = L

Nx
. Similarly the velocity domain is discretized by Nv cells with

constant step ∆v = vmax−vmin
Nv

. The cells are denoted [xi−1/2,xi+1/2] and [vj+1/2,vj−1/2] with
center xi = 1

2(xi+1/2 + xi−1/2) and vj = 1
2(vj+1/2 + vj+1/2) respectively.

We first present the two semi-Lagrangian methods used for the Vlasov equation, then we
briefly present the Finite Volume scheme used for the Euler system.
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4.3.1 The Semi-Lagrangian method based on B-Spline interpolation
This method relies on the nonconservative form of the Vlasov equation (4.18) (and (4.24) for the
soft congested system). Assuming that the distribution function is known at a time tk = k∆t,
the solution at time tk+1 is given by the formula (4.19). In this method, the distribution function
is approximated at the center of the cells of the computational domain, fk

i,j = f(tk,xi,vj). Hence,
it is a pointwise discretization of the distribution function. It is updated at each time step from
its value at the foot of the characteristic curve (X(tk; tk+1,xi,vj), V (tk; tk+1,xi,vj)). In general,
the foot of the characteristic curve (X(tk; tk+1,xi,vj), V (tk; tk+1,xi,vj)) is not a point on the grid,
so it has to be interpolated. In this work, we interpolate the foot of the characteristic using
B-Spline interpolation [112]. This method is used for transport equations of the form

∂tg + A(t,y)∂yg = 0.

where (t,y) 7→ A(t,y) is a given advection field. As long as A is smooth enough, the characteristic
curves

d
ds

Y (s; t,y) = A(s,Y (s; t,y)), Y (t; t,y) = y,

are well defined and the solution writes

g(t,y) = g(s, Y (s; t,y)).

We denote as(yi+1/2)i∈Ny a finite set of mesh points of a given computational domain [ymin,ymax],
with constant step ∆y = yi+1/2 − yi−1/2, and yi, the center of the cell [yi−1/2,yi+1/2]. Assuming
that g is known at a time tk = k∆t, one has for gk(y) := g(tk,y),

gk+1(yi) = gk(Y (tk; tk+1,yi)).

Since Y (tk; tk+1,yi) is not necessarily at the center of a cell, we interpolate the value gk(Y (tk; tk+1,yi))
with a B-Spline. We introduce gk

S(y) the interpolation function

gk
S(y) =

∑
j

σk
j S3(y − yj),

with S3 given by

S3(y) = 1
6∆y



(
2 − |y|

∆y

)3

, if ∆y ≤ |y| ≤ 2∆y,

4 − 6
(

y

∆y

)2

+ 3
(

|y|
∆y

)3

, if 0 ≤ |y| ≤ ∆y,

0 otherwise.

To compute the coefficients σk
j , one has to construct a linear system using the constraints

gk
S(yi) = gk(yi).

We refer to [112] for details on the construction of this linear system.
This method has been developed to solve Vlasov-Poisson equations, where the advection

field is divergence-free. In our case, the Vlasov equation (4.18) (and (4.24) for the soft congested
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system) is not divergence-free because of the friction term. To remedy this problem, we intro-
duce an appropriate splitting between the divergence-free part (that is also splitting between
the advection in x and in v) and the non divergence-free part. For the original system (4.7), it
writes

∂tf + v∂xf = 0, (4.29)

∂tf +
(

D⋆

m⋆

u − ∂xp
)

∂vf = 0. (4.30)

This is solved with with the BSPL scheme. In each case the foot of the characteristic curves
can be computed explicitly

X(tk; tk+1,xi) = xi − ∆tvj,

V (tk; tk+1,vj) = vj − ∆t

(
D⋆

m⋆

uk
i −

pk
i+1 − pk

i−1
2∆x

)
.

The non divergence-free part
∂tf − ∂v

(
D⋆

m⋆

vf
)

= 0

is solved using an implicit upwind scheme. For the soft-congested system, the splitting is done
by first solving the divergence-free part (4.30) then the non divergence)-free part that writes

∂tf − ∂x(∂xπ(α)f) = 0 (4.31)

∂tf − ∂v

(
D⋆

m⋆

vf
)

= 0, (4.32)

are both solved with an implicit upwind scheme.

4.3.2 A conservative semi-Lagrangian method
We present here the conservative semi-Lagrangian method used in this Chapter [18, 58, 60]. It
is based on the conservative form of the Vlasov equation. For the sake of the presentation, we
will explain the method for a general transport equation of the form

∂tg + ∂y(A(t,y)g) = 0, (4.33)

with a given advection field (t,y) 7→ A(t,y). We assume that A is smooth enough so that the
characteristic curves

d
ds

Y (s; t,y) = A(s,Y (s; t,y)), Y (t; t,y) = y

are well defined. Then the solution of (4.33) writes

g(t,y) = g(s,Y (s; t,y))J(s; t,y)

for any t, s, y with
J(s; t,y) = e(

∫ s

t
∂yA(σ,Y (σ;t,y)) dσ).

Then, the solution g verifies the conservation property∫ b

a
g(t,y) dy =

∫ Y (s;t,b)

Y (s;t,a)
g(s,y) dy. (4.34)
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We denote as (yi+1/2)i∈Ny a finite set of mesh points of a given computational domain [ymin,ymax],
with constant step ∆y = yi+1/2−yi−1/2, and yi, the center of the cell [yi−1/2,yi+1/2], and assuming
that g is known at a time tk = k∆t, the formula (4.34) writes∫ yi+1/2

yi−1/2

g(tk+1,y) dy =
∫ Y (tk;tk+1,yi+1/2)

Y (tk;tk+1,yi−1/2)
g(tk,y) dy.

We obtain then the formulation

gk+1
i = gk

i − ∆t

∆y

(
Gk

i+1/2 − Gk
i−1/2

)
with

gk
i = 1

∆y

∫ yi+1/2

yi−1/2

g(tk,y) dy

and the flux Gk
i+1/2 is

Gk
i+1/2 = 1

∆t

∫ yi+1/2

Y (tk;tk+1,yi+1/2)
g(tk,y) dy.

The idea of the PFC scheme [60] is to compute the numerical flux by introducing a primitive
function G of g:

Gk
i+1/2 = 1

∆t

∫ yi+1/2

Y (tk;tk+1,yi+1/2)
g(tk,y) dy = 1

∆t

(
Gk(yi+1/2) − Gk(Y (tk; tn+1,yi+1/2))

)
.

The primitive function Gk verifies Gk(yi+1/2) − Gn(yi−1/2) = ∆ygn
i , so that

Gk(yi+1/2) =
i∑

µ=0
gk

µ.

Then, we need to introduce an interpolation procedure to compute Gk(Y (tk; tk+1,yi+1/2)). Fol-
lowing [58], a third order reconstruction of the primitive function G leads to the following
formula for the numerical flux, when A is positive

Gk
i+1/2 = αk

i

∆t

[
gk

i + L+
i

6

(
1 − αk

i

∆y

)(
2 − αk

i

∆y

)
(gk

i+1 − gk
i ) + L−

i

6

(
1 − αk

i

∆y

)(
1 + αk

i

∆x

)
(gk

i − gk
i−1)

]

where L+ and L− are the limiters introduced by Umeda in [114]. These limiters preserve the
positivity and the local extrema of the numerical solutions. The coefficient αi is defined by

αk
i = yi+1/2 − Y (tk; tk+1,yi+1/2).

In our case, the scheme can be simplified by using a splitting procedure. For the original
system (4.7), we first solve

∂tf + ∂x(vf) = 0
then

∂tf + ∂v

(
(−∂xp(ϱ) + D⋆

m⋆

(u − v))f
)

= 0.

In each case, the foot of the characteristic curves can be computed explicitly. One has

X(tk; tk+1,xi+1/2) = xi+1/2 − ∆tkvj
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V (tk; tk+1,vj+1/2) = vj+1/2e
D⋆
m⋆

∆tk + uk
i

(
1 − e

D⋆
m⋆

∆tk
)

−
pk

i+1 − pk
i−1

2∆y
∆t.

For the soft congested system (4.8), since in this case, the charateristic curve in x can no longer
be computed explicitely, we prefer to do another splitting and solve

∂tf + ∂x(vf) = 0,

with the PFC scheme, then
∂tf − ∂x(∂xπ(α)f) = 0,

with an implicit upwind scheme, then

∂tf + ∂v

(
(−∂xp(ϱ) + D⋆

m⋆

(u − v))f
)

= 0,

with the PFC scheme.

4.3.3 Finite Volume scheme

We present here the Finite Volume scheme used in this Chapter [68]. The starting point of the
method is the fluid part written in conservation form

∂tU + ∂xF(U,f) = 0.

Assuming that the solution U is known at a time tk = k∆t, the Finite Volume scheme write

Uk+1
i = Uk

i − ∆tk

∆x
(Fi+1/2 − Fi−1/2).

where
Uk

i := 1
∆x

∫ xi+1/2

xi−1/2

U(tk,x) dx.

It remains to give a definition for the numerical flux Fi+1/2. In this work, we restrict ourselves
to a Rusanov flux:

Fi+1/2 =
F(Uk

i+1, fk
i+1,j) + F(Uk

i , fk
i,j)

2 − max(λ±(Uk
i+1, fk

i+1,j), λ±(Uk
i , fk

i,j))
Uk

i+1 − Uk
i

2 .

(4.35)

4.3.4 Time splitting

Here, we describe the complete algorithm and the time splitting. We first present the splitting
for the BPSL scheme, then for the PFC scheme. We assume that the discrete solution (Uk

i ,fk
i,j)

at a time tk is known. To update theses quantities, we proceed as follows
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B-Spline semi-Lagrangian method.
• Transport of the particles with velocity v in the direction x.

We compute f ∗
i,j by solving the free transport ∂tf + v∂xf = 0 with a BSPL scheme for a

timestep ∆tk/2 with the initial condition fk
i,j.

• Correction of the particle distribution.
In this step, we take into account the close packing limit.

– Soft Congestion case. We compute f ∗∗
i,j by solving the equation

∂tf − ∂x(∂xπεf) = 0
with a timestep ∆tk/2 and the initial condition f ∗

i,j with an implicit upwind scheme.
– Original system. We compute f ∗∗

i,j by applying the Random Repair Algorithm de-
scribed in Section 4.3.4.1.

• Transport of the divergence free part of the force field in the direction v.
We compute f ∗∗∗

i,j by solving ∂tf + (D⋆u − ∂xp(ϱ))∂vf = 0 with the BSPL scheme during
a timestep ∆tk with initial condition f ∗∗

i,j .

• Treatment of the drift term.
We compute f ∗∗∗∗

i,j by solving the drift equation ∂tf − ∂v(D⋆vf) = 0 with an implicit
upwind scheme.

• Transport of the fluid.
We compute Uk+1

i by solving the fluid equations ∂tU + ∂xF(U,f) = 0 with a Finite
Volume scheme.

Uk+1
i = Uk

i − ∆tk

∆x
(Fi+1/2 − Fi−1/2).

The numerical flux is a Rusanov flux that depends on Uk
i and f ∗∗∗∗

i,j :

Fi+1/2 =
F(Uk

i+1, f ∗∗∗∗
i+1,j) + F(Uk

i , f ∗∗∗∗
i,j )

2 − max(λ±(Uk
i+1, f ∗∗∗∗

i+1,j), λ±(Uk
i , f ∗∗∗∗

i,j ))Uk
i+1 − Uk

i

2 .

• Transport of the particles with velocity v the direction x.
Finally, we perform the last transport step of the particles. We compute f ∗∗∗∗∗

i,j by solving
the free transport ∂tf + v∂xf = 0 with a BSPL scheme for a timestep ∆tk/2 with the
initial condition f ∗∗∗∗

i,j .

• Correction of the particle distribution.
In this step, we take into account the close packing limit.

– Soft Congestion case. We compute fk+1
i,j by solving the equation

∂tf − ∂x(∂xπεf) = 0
with a timestep ∆tk/2 and the initial condition f ∗∗∗∗∗

i,j with an implicit upwind
scheme.

– Original system. We compute fk+1
i,j by applying the Random Repair Algorithm

described in Section 4.3.4.1.
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PFC scheme.

• Transport of the particles in the direction x. We solve the free transport with time
step ∆t

2 :

f ∗
i,j = fk

i,j − ∆t

2∆x

(
F k

i+1/2,j − F k
i−1/2,j

)
• Correction of the particle distribution.

In this step, we take into account the close packing limit.

– Soft Congestion case. We compute f ∗∗
i,j by solving the equation

∂tf − ∂x(∂xπεf) = 0

with a timestep ∆tk/2 and the initial condition f ∗
i,j with an implicit upwind scheme.

– Original system. We compute f ∗∗
i,j by applying the Random Repair Algorithm de-

scribed in Section 4.3.4.1.

• Transport of the fluid.
We compute Uk+1 by solving the fluid equations ∂tU + ∂xF(U,f) = 0 with a Finite
Volume scheme with a Rusanov flux (4.35)

Uk+1
i = Uk

i − ∆tk

∆x
(Fi+1/2 − Fi−1/2)

using the value f ∗∗
i,j .

• Transport in the direction v. We update the particle distribution function in the
direction v with a time step ∆t

f ∗∗∗
i,j = f ∗∗

i,j − ∆tk

∆v

(
F ∗

i,j+1/2 − F ∗
i,j−1/2

)
.

• Transport in the direction x We solve the free transport with a time step ∆t
2 :

f ∗∗∗∗
i,j = f ∗∗

i,j − ∆tk

2∆x

(
F ∗∗

i+1/2,j − F ∗∗
i−1/2,j

)
.

• Correction of the particle distribution.
In this step, we take into account the close packing limit.

– Soft Congestion case. We compute fk+1
i,j by solving the equation

∂tf − ∂x(∂xπεf) = 0

with a timestep ∆tk/2 and the initial condition f ∗∗∗∗
i,j with an implicit upwind scheme.

– Original system. We compute fk+1
i,j by applying the Random Repair Algorithm

described in Section 4.3.4.1.
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Remark 4.3.1 (About the timestepping). A complete stability analysis of the proposed scheme
is beyond the scope of this work. We nevertheless make some remarks about the timestepping.

• First, in the case of the BSPL scheme, note that the solving of the kinetic part does
not impose any constraint on the time stepping. Indeed, the BSPL is free of any CFL
condition because we use it for the case where the advection is constant. If the advection
is not constant, we would need to impose a CFL such that characterestics curves do no
cross. Furthermore, the resolution of the drift part of the drag force is done implicitly.
For the PFC method, one needs to impose a CFL condition such that the characteristics
do not cross each other [21,37]. This leads to the following restriction

max
j

(|vj|)∆tk
1 ≤ ∆x

∆tk
2 ≤ ∆v

D⋆

m⋆

(
maxj(|vj|) + maxi

(
|uk

i |
))

+ maxi

(
|∂xpk

i |
)

• For the resolution of the fluid part, an explicit Finite Volume Scheme is used. A formal
analysis of the Jacobian of the fluid part reveals that the eigenvalues write

λ± = u ±
√

p′(ϱ)
α

.

For stability reasons, the timestep should verify

∆tk
3 ≤ ∆x

max
i

(λ±(Uk
i , fk

i,j))
.

• In practice, we impose
∆tk

BSPL = CFL ∆tk
3

for the B-Spline semi-Lagrangian scheme, and

∆tk
PFC = CFL min(∆tk

1, ∆tk
2, ∆tk

3)

for the PFC scheme. In both cases, we take CFL = 0.5. With this choice of timestep,
we did not observe any numerical instability for the system (4.7). For the soft congestion
case, we observed instabilities in the region where α is close to α⋆. This probably could be
improved with implicit techniques for the fluid phase.

Remark 4.3.2 (About the Finite Volume scheme.). The weakest part of the scheme we proposed
is most certainly the Finite Volume part. In this study, the main focus is on the discretization
of the dispersed phase, this is why we restricted ourselves to the simplest Finite Volume scheme
for the fluid phase. An improvement would be to use for instance a Lagrange + Remap scheme.
See also [11,18,91].
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4.3.4.1 Correction procedure

The spirit of the correction procedure is to compare αk
i with α⋆ and check if αk

i ≥ α⋆. In this
work, α⋆ is the same in all the cells, but one could easily extend this work to a non-homogenous
packing limit. Assume that αk

i < α⋆, this means that the particle volume fraction in the cell
i, m⋆∆v

∑
j fk

i,j is too big, and one has to redistribute the mass in the cells around the cell i.
Taking inspiration from [94], we propose to redistribute the mass with a stochastic algorithm.
Starting from the saturated cell, we initiate a random walk. When the walk encounters a cell
which is not saturated, it get rids of as much mass as it can. Then the random walk continues,
until the exceeding mass has been completely redistributed. The main difficulty for adapting
the algorithm from [94] is that we need to modify the distribution function fk

i,j itself for all the
velocity cells j. The algorithm reads

Random Repair algorithm. Given a discretized distribution function fk
i,j, such that there

is a cell in the space domain i such that αk
i < α⋆:

1. We start from a cell i where αk
i < α⋆.

2. We compute the exceeding mass ∆m. Then we compute

fk+1
i,j = (1 − α⋆)

fk
i,j

m⋆∆v
∑

l fk
i,l

, for all j.

Then αk+1
i = α⋆.

3. Start a random walk (Sm), when the walk meets a cell Sm such that αk
Sm

> α⋆, get rid of
as much mass as possible

fk+1
Sm,j = fk

Sm,j + ∆m

m⋆∆v
∑

l fk
i,l

fk
i,j, for all j.

When all the exceeding mass has been distributed, the volume fraction αk+1
i is admissible.

4.4 Numerical results
In this section, we present several numerical results to validate each component of our method.
The first test examines linear damping [28, 62] and focuses on verifying the coupling between
the volume fraction in the fluid phase and the pressure gradient in the dispersed phase. Next,
we assess how the close packing limit is handled, starting with the simplest case where there is
no gas. Finally, we present two tests that integrate all these aspects. We conclude with a last
test in 2D-2V

4.4.1 Linear Damping in the dragless case
In this test, we consider the dragless case D⋆ = 0. The initial data is

ϱ(t = 0,x) = ϱ0

u(t = 0,x) = 0
f(t = 0,x,v) = 1√

2π
e−v2/2 (1 + ε cos(kx)) ,
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(a) The evolution of ∥ϱ − ϱ∥L2 and ∥u∥L2 with respect to t with the PFC scheme. Here, Nx = 128, Nv = 32.
In blue the numerical result and in orange the solution predicted by the linear theory.
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(b) The evolution of ∥ϱ − ϱ∥L2 and ∥u∥L2 with respect to t with the PFC scheme. Here, Nx = 256, Nv = 32.
In blue the numerical result and in orange the solution predicted by the linear theory.

Fig. 4.1
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where ε = 0.001, k = 0.5 and ϱ0 = 1. We take m⋆ = 0.2 and Nv = 32. The computational
domain is [0,4π]× [−4,4]. It has been proven in [28,62] that in this case, one expects a damping
of ∥ϱ − ϱ∥L2 and ∥u∥L2 to 0, and, with the given initial condition, the damping is expected to
be like cos(ℜe(ω)t)eℑm(ω)t where

ω ≈ 0.56 − i0.086.

In Figure 4.1, one can see the evolution of the L2 norm of ϱ − ϱ0 and u for the PFC scheme
with Nx = 128 and Nx = 256. We observe that the decay of these quantities follows very
well the linear theory developed in [28]. The observed recurrence time TR = 51.84 is also well
calculated as the theoretical recurrence time is TR = 2π/(k∆v). We do not present result with
the BSPL scheme since this problem has been studied with this scheme in [28]. The model
without packing (4.7) and the model with soft packing (4.8) give the same results since in this
case, we are far from the packing limit, so we present only the results for the model without
packing (4.7).

4.4.2 Pure transport of particles without coupling
In this test, we only consider the pure transport of the particles, so that the equation discretized
in this subsection reads ∂tf + v∂xf = 0,

f(t = 0,x,v) = f0(x,v).
We consider the initial condition

f0(x,v) = 1
2π

√
σxσv

e
− (v−2)2

2σ2
v e

(x−2)2

2σ2
x 1v>0(v) + 1

2π
√

σxσv

e
− (v+2)2

2σ2
v e

(x−4)2

2σ2
x 1v<0(v).

The computational domain is [0,6] × [−6,6]. The coefficients are σx = 0.09, σv = 0.2 and
m⋆ = 0.2. We take Nx = Nv = 256. In corresponds to the situation where there is two clouds
of particles going into each other. We are interested in the behavior of the Random Repair
Algorithm. The results can be found in Figure 4.2.

Initially, the two clouds are spread on opposite sides of the computational domain. As
they converge at the center, particle density increases, but the Random Repair Algorithm
successfully keeps it below the close-packing threshold. Eventually, some particles pass through
the congested zone, and the density of the particles decreases.

4.4.3 Collision of two pack of particles
In this test, we consider the case with a gas initially at rest, with two clouds of particles going
into the middle of the domain. The initial condition for the gas is

(ϱ0,u0,p0)(x) = (1,0,1),

with γ = 1.4. The initial condition for the particles is

f0(x,v) = 1√
2πσv

e
− (v−6)2

2σ2
v

1√
2πσx

e
(x−2.6)2

2σ2
x 1v>0(v) + 1√

2πσv

e
− (v+6)2

2σ2
v

1√
2πσx

e
(x−3.4)2

2σ2
x 1v<0(v).

with σx = σv = 0.1. The drag coefficient is D⋆ = 1, and m⋆ = 0.32, Nx = Nv = 200. Moreover,
α⋆ = 0.4. The computational domain is [0,6] × [−10,10] with periodic boundary conditions on
both dimensions, and discretization parameters Nx = Nv = 200.
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Fig. 4.2: The particle volume fraction x 7→ 1 − α(t,x) with the PFC scheme for different
times

The results for the PFC scheme are visible in Figure 4.3 with the system (4.7) and in
Figure 4.4 with the system (4.8). The results for the BSPL scheme are visible in Figure 4.6 for
the system (4.7)and in Figure 4.7 for the system (4.8).

Initially, the two particle clouds move toward each other, the particle volume fraction in-
creases until reaching the close-packing limit, α⋆. This collision compresses the gas, causing a
sharp rise in fluid density in the congested zone. Over time, some particles begin to penetrate
this dense layer, reducing both the particle concentration and gas density as the congestion
dissipates.

The results from both PFC and BSPL schemes, for both systems (4.7) and (4.8), are nearly
identical.

Finally, we present convergence tests using the BSPL scheme, displaying the volume fraction
α at t = 0.1 for various mesh sizes. Figure 4.8a shows results with the original system (4.1),
while Figure 4.8b uses the soft congested system (4.8). Initially, the results indicate convergence
as the mesh is refined. However, with very fine meshes, we observe instabilities, suggesting
potential non-convergence of the method.

4.4.4 Shock wave passing through a layer of particles
In this test, we examine the interaction between a shock wave and a stationary particle cloud.
The gas is initialized with a shock front, with conditions:

(ϱ0,u0,p0)(x) =

(0.54, 1.54, 1.54γ) for x < 0.2
(1,0,1) for x > 0.2.

where γ = 1.4. Immediately after the shock front, there is a cloud of particles at equilibrium,
with an initial distribution function given by

f0(x,v) = 1√
2πσx

e− (x−3)2
σx

1√
2πσv

e− v2
σv ,

where σx = σv = 0.1. The computational domain is [0,6] × [−10,10]. Other parameters include
a drag coefficient D⋆ = 1, m⋆ = 0.32, α⋆ = 0.4, and discretization parameters Nx = Nv = 200.
The results for the PFC scheme are shown in Figures 4.9 for system (4.7) and in Figures 4.10
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for system (4.8). We also display the distribution function in Figure 4.11. Similarly, results for
the BSPL scheme appear in Figures 4.12 for system (4.7) and Figures 4.13 for system (4.8).

Initially, we observe that the shock wave compresses and pushes the particle cloud forward.
This interaction causes a noticeable increase in the gas density on the left side of the particle
cloud, as particles concentrate and reach the close-packing limit. At t = 0.38, the fluid volume
fraction reaches the close-packing limit α⋆, marking the peak compression phase in the congested
region. Due to drag effects and the pressure of the gas, the gas shock transfers momentum to the
particles, accelerating them in the shock’s direction. This momentum transfer results in particle
movement and spreading of the initial particle distribution as the shock front propagates. As
particles disperse following the shock passage, the gas density and particle volume fraction start
to decline, gradually returning to equilibrium. The density profile residual perturbations as the
particles and gas adjust post-shock.

While the PFC scheme performs well with minimal oscillations, the BSPL scheme encounters
difficulties in this test, showing significant spurious oscillations in the results.

4.4.5 Shock tube in 2D-2V.
In this section, we present a 2D-2V test using the BSPL scheme with linear splines. The
additional dimensions are handled via directional splitting, and we use only uniform meshes.
This test models a shock tube, with initial gas conditions:

(ϱ0, u0, p0)(x, y) =

(10, (0, 0), 10γ) for x < 0.2,

(0.125, (0, 0), 0.125γ) for x > 0.2,

where γ = 1.4. Immediately behind the shock front, there is a stationary particle cloud in
equilibrium, with an initial distribution function:

f0(x, y, vx, vy) = 1√
2πσx

e− (x−0.5)2
σx

1
√2πσy

e
− (y−0.5)2

σy
1√

2πσv

e− v2
x

σv
1√

2πσv

e−
v2

y
σv ,

where σx = σy = σv = 0.1. The computational domain is [0, 1]2 × [−6, 6]2. The simulation
parameters are D⋆ = 0, m⋆ = 0.0375, and discretization parameters are Nx = Ny = Nvx =
Nvy = 64.

In Figure 4.14, we present a cross-section of the solution aty = 0.5. Figures 4.15, 4.16, and
4.17 display the complete solution across the 2D spatial domain. In Figure 4.15, the red cells
indicate regions where the volume fraction reaches the close-packing limit. Due to the inherent
randomness of the algorithm, we notice a loss of symmetry along the y = 0.5 axis. Nevertheless,
the numerical behavior remains consistent with that observed in the 1D case.
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(a) The fluid volume fraction x 7→ α(t, x) with the PFC scheme at different times t = 0, t = 0.05, t = 0.09,
t = 0.12 and t = 0.19.
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(b) The fluid density x 7→ ϱ(t, x) with the PFC scheme at different times t = 0, t = 0.05, t = 0.09, t = 0.12 and
t = 0.19.
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(c) The fluid velocity x 7→ u(t, x) with the PFC scheme at different times t = 0, t = 0.05, t = 0.09, t = 0.12 and
t = 0.19.

Fig. 4.3: Collision with the original model (4.7) with the PFC scheme.
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(a) The fluid volume fraction x 7→ α(t, x) with the PFC scheme at different times t = 0, t = 0.05, t = 0.09,
t = 0.13 and t = 0.19.
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(b) The fluid density x 7→ ϱ(t, x) with the PFC scheme at different times t = 0, t = 0.05, t = 0.09, t = 0.13 and
t = 0.19.
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(c) The fluid velocity x 7→ u(t, x) with the PFC scheme at different times t = 0, t = 0.05, t = 0.09, t = 0.13 and
t = 0.19.

Fig. 4.4: Collision with the soft-congested model (4.8) with ε = 10−6 with the PFC scheme.
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Fig. 4.5: The particle distribution function f(t,x,v) for the soft-congested system (4.8)
with the PFC scheme at different times.
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(a) The fluid volume fraction x 7→ α(t, x) with the BSPL scheme at different times t = 0, t = 0.06, t = 0.08,
t = 0.11 and t = 0.16.
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(b) The fluid density x 7→ ϱ(t, x) with the BSPL scheme at different times t = 0, t = 0.06, t = 0.08, t = 0.11
and t = 0.16.
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(c) The fluid velocity x 7→ u(t, x) with the BSPL scheme at different times t = 0, t = 0.06, t = 0.08, t = 0.11
and t = 0.16.

Fig. 4.6: Collision with the original model (4.7) with the BSPL scheme.
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(a) The fluid volume fraction x 7→ α(t, x) with the BSPL scheme at different times t = 0, t = 0.06, t = 0.08,
t = 0.11 and t = 0.16.
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(b) The fluid density x 7→ ϱ(t, x) with the BSPL scheme at different times t = 0, t = 0.06, t = 0.08, t = 0.11
and t = 0.16.
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(c) The fluid velocity x 7→ u(t, x) with the BSPL scheme at different times t = 0, t = 0.06, t = 0.08, t = 0.11
and t = 0.16.

Fig. 4.7: Shock with the soft-congested model with ε = 10−6 with the BSPL scheme.
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0.0 0.2 0.4 0.6 0.8 1.0

x

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α, n =64, ε =1e-06

α, n =128, ε =1e-06

α, n =256, ε =1e-06

α, n =512, ε =1e-06

α, n =1024, ε =1e-06
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(a) The fluid volume fraction x 7→ α(t, x) with the PFC scheme at different times t = 0, t = 0.31, t = 0.38,
t = 0.53 and t = 0.68.
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(b) The fluid density x 7→ ϱ(t, x) with the PFC scheme at different times t = 0, t = 0.31, t = 0.38, t = 0.53 and
t = 0.68.
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(c) The fluid velocity x 7→ u(t, x) with the PFC scheme at different times t = 0, t = 0.31, t = 0.38, t = 0.53 and
t = 0.68.

Fig. 4.9: Shock with the original model with the PFC scheme.
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(a) The fluid volume fraction x 7→ α(t, x) with the PFC scheme at different times t = 0, t = 0.31, t = 0.38,
t = 0.53 and t = 0.68.
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(b) The fluid density x 7→ ϱ(t, x) with the PFC scheme at different times t = 0, t = 0.31, t = 0.38, t = 0.53 and
t = 0.68.
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(c) The fluid velocity x 7→ u(t, x) with the PFC scheme at different times t = 0, t = 0.31, t = 0.38, t = 0.53 and
t = 0.68.

Fig. 4.10: Shock with the soft-congested model with ε = 10−6 with the PFC scheme.
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Fig. 4.11: The particle distribution function f(t,x,v) for the soft-congested system (4.8)
with the PFC scheme at different times.
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(a) The fluid volume fraction x 7→ α(t, x) with the BSPL scheme at different times t = 0.02, t = 0.32, t = 0.44,
t = 0.61 and t = 0.91.
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(b) The fluid density x 7→ ϱ(t, x) with the BSPL scheme at different times t = 0.02, t = 0.32, t = 0.44, t = 0.61
and t = 0.91.
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(c) The fluid velocity x 7→ u(t, x) with the BSPL scheme at different times t = 0, t = 0.32, t = 0.44, t = 0.61
and t = 0.92.

Fig. 4.12: Shock with the original model (4.7) with the BSPL scheme.

126



4.4. Numerical results

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Position, x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α
(t
,x

)

t = 0.00

t = 0.32

t = 0.44

t = 0.61

t = 0.92

(a) The fluid volume fraction x 7→ α(t, x) with the PFC scheme at different times t = 0, t = 0.32, t = 0.44,
t = 0.61 and t = 0.92.
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(b) The fluid density x 7→ ϱ(t, x) with the PFC scheme at different times t = 0, t = 0.32, t = 0.44, t = 0.61 and
t = 0.92.
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(c) The fluid velocity x 7→ u(t, x) with the PFC scheme at different times t = 0, t = 0.32, t = 0.44, t = 0.61 and
t = 0.92.

Fig. 4.13: Shock with the soft-congested model (4.8) with ε = 10−6 with the BSPL scheme.
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(a) Cross section of the fluid volume fraction x 7→ α(t, x,y = 0.5) with the BSPL scheme at different times t = 0,
t = 0.32, t = 0.44, t = 0.61 and t = 0.92.

0.0 0.2 0.4 0.6 0.8 1.0

Position, x

0

5

10

15

20

25

30

p(
t,
x

)

t = 0.01

t = 0.07

t = 0.08

t = 0.09

t = 0.13

(b) Cross section of the pressure x 7→ p(t, x,y = 0.5) with the BSPL scheme at different times t = 0, t = 0.32,
t = 0.44, t = 0.61 and t = 0.92.
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(c) Cross section of the x-component of the fluid velocity x 7→ ux(t, x, = 0.5) with the BSPL scheme at different
times t = 0, t = 0.32, t = 0.44, t = 0.61 and t = 0.92.

Fig. 4.14: Shock tube with the original model (4.8) in 2D-2V with the BSPL scheme.
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Fig. 4.15: The particle volume function 1 − α(t,x,y) with the BSPL scheme at different
times.
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Fig. 4.16: The pressure of the fluid p(t,x,y) with the BSPL scheme at different times.
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Fig. 4.17: The velocity of the fluid u(t,x,y) with the BSPL scheme at different times. The
color map represents the magnitude of the velocity |u|, while the arrow represents the
actual velocity vector u.
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Conclusions and perspectives

In this thesis, we studied a fluid-kinetic coupling that describes dense suspension of particles in a
carrying fluid. We proposed several contribution. The Chapter 2 is dedicated to the existence of
solution for thick spray. After introducing the main difficulties to construct local-in-time strong
solutions, we introduced a new averaged system for descring thick spray, by reintroducing the
radius of the particles explicitely in the equations. This led to a result of local-in-time well-
posedness for strong solution. The Chapter 3 study a linearized thick spray model without
friction. We show that the structure of the linearized equation is reminiscient to the linearized
Vlasov Poisson equations, around suitable equilibrium, and that this structure leads to a linear
damping result, which present a qualitatively similar behavior to the linear Landau damping of
plasma physics. We also present a numerical scheme that illustrate the damping effect. We also
present some numerical result for instable equilibrium profiles, and we compare the numerical
result to the correspondign test cases of plasma physics. The Chapter 4 is dedicated to the
construction of a numerical scheme for thick spray models, based on a Finite Volume scheme
for the fluid part, and a semi-Lagrangian scheme for the particles. We also propose methods
to take into account a close packing limit of the particles in the simulations. The results show
that semi-Lagrangian method can be well adapted to simulate a thick spray model, and that a
close packing limit can be recovered by the proposed methodologies.

We list several natural perspectives to this work:

• It would be interesting to try to construct global weak solution in the suitable sence for
the proposed averaged thick spray model. Moreover, adapting the numerical schemes
proposed in Chapter 4 to the thick spray model seems to be an interesting perspective.
It would be interesting to extend the local-in-time well-posedness result to an averaged
system that take into account more physics: energy exchange between the particles,
polydispersion, collision, fragmentation, coalescence.

• A natural question that arise in light of the linear damping result is: Can we extend this
result for the full nonlinear system ? This question seems to be difficult, and the methods
used for the nonlinear Landau damping [16,96] are probably not adapted.

• The numerical methods proposed in the Chapter 4 can still be greatly improved. An
immediate perspective could be to use a better numerical scheme for the gas part, for
example, using a Lagrange+remap method. Moreover, the incorporation of more variable
for the particles and using the full Euler system for the fluid part is important for the
physical applications.

• Concerning the modification to account for the close-packing limit, it appears that this
adjustment may not be ideal from a modeling perspective. Specifically, the modification
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is of “first order,” meaning that particles slow down as the density approaches the close-
packing limit but regain their initial velocities when the density decreases. A “second-
order” adjustment, where the packing pressure is included in the acceleration term of the
Vlasov equation, might be more appropriate. Currently, the packing pressure is included
in the transport operator, based on our conjecture—supported by numerical results—that
the Random Repair algorithm approximates a hard congestion model. It would be in-
teresting to explore methods developed for second-order hard congestion models, see the
PhD thesis of Anthony Preux [103].
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Etude Mathématique et Numérique de Modèles de Spray Épais

Résumé : Cette thèse est consacrée à la modélisation, à l’analyse mathématique et à l’analyse numérique d’un système
d’équations aux dérivées partielles décrivant l’évolution d’une suspension de particules neutres dans un fluide ambiant,
souvent désignée sous le nom de spray. La phase dispersée est modélisée par les équations de la théorie cinétique,
tandis que la phase continue est décrite par les équations de la mécanique des fluides. Nous nous concentrons en
particulier sur le cas des sprays dits épais.

Le Chapitre 2 est consacré au problème de la construction de solutions pour le système des sprays épais. Nous
introduisons un nouveau système dans lequel les termes singuliers sont régularisés et nous démontrons l’existence et
l’unicité de solutions avec une régularité de type Sobolev, localement en temps.

Le Chapitre 3 explore l’analogie entre le système des sprays épais et le système de Vlasov-Poisson décrivant un
plasma électrostatique. Nous montrons qu’en l’absence de friction, le système des sprays épais présente une propriété
d’amortissement linéaire de l’énergie acoustique, analogue à l’amortissement de Landau bien connu en physique des
plasmas. Cet effet est illustré par des résultats numériques.

Le Chapitre 4 est consacré à la simulation numérique du système des sprays épais. Nous proposons une approche
combinant des méthodes existantes : une méthode semi-Lagrangienne pour la phase dispersée, couplée à une méthode
de type Volume Fini pour la phase continue. Nous abordons également le problème de la limite de packing et
introduisons deux méthodes permettant de conserver cette limite au niveau discret. Enfin, nous présentons des
résultats numériques..

Mots-clés : Equations aux dérivées partielles, théorie cinétique, mécanique des fluides, analyse.

Mathematical and Numerical Study of Thick Spray Models

Abstract: This thesis is dedicated to the modeling, mathematical analysis, and numerical analysis of a partial
differential equation system describing the evolution of a suspension of neutral particles in a surrounding fluid, often
referred to as a spray. The dispersed phase is modeled by the equations of kinetic theory, while the continuous phase
is described by the equations of fluid mechanics. We focus particularly on the case of so-called thick sprays.

Chapter 2 is devoted to the problem of constructing solutions for the thick spray system. We introduce a new
system in which singular terms are regularized, and we prove the existence and uniqueness of solutions with Sobolev
regularity, locally in time.

Chapter 3 explores the analogy between the thick spray system and the Vlasov-Poisson system describing an
electrostatic plasma. We demonstrate that, in the absence of friction, the thick spray system exhibits a property of
linear damping of acoustic energy, analogous to Landau damping, which is well known in plasma physics. This effect
is illustrated by numerical results.

Chapter 4 is dedicated to the numerical simulation of the thick spray system. We present an approach that
combines existing methods: a semi-Lagrangian method for the dispersed phase, coupled with a finite volume method
for the continuous phase. We also address the packing limit issue and introduce two methods to preserve this packing
limit at the discrete level. Finally, we present numerical results.

Keywords: Partial differential equations, kinetic theory, fluid mechanics, analysis.
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