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Introduction
We are interested in thick spray models [1], which are similar to system (4). In the usual formulation of the model, the Euler part admits a conservative
formulation, but the Vlasov part does not. This fact brings the question of the definition of weak solution for such systems. To study the nonconservative
product in the Vlasov equation, we consider a toy model :

∂tf + v∂xf − ∂xpε∂vf = 0, where the pressure is a travelling wave : pε(x, t) = p

(
x− σt
ε

)
, p(±∞) = p±, p′ < 0. (1)

Approach a la Dal Maso-Le Floch-Murat
A first approach is to study the nonconservative product with the DLM
theory [2]. In this theory, the nonconservative product of the form g∂xu
is defined as a measure, denoted [g∂xu]φ which depends on a family of
Lipschitz path φ. Once a path φ has been chosen, one writes ∀ψ ∈ D(R2)∫
R2

∂xpε∂vfψ dxdv = −
∫
R2

∂xpεf∂vψ dxdv −−−→
ε→0

−
∫
R3

[∂xpf ]φ ∂vψ dxdv.

Definition 1 Let φ be a Lipschitz continuous path. We say that f is a
DLM-weak solution of the Vlasov equation (1) if, for every ψ ∈ D(R3),∫

R3

(∂tψ(t, x, v) + v∂xψ(t, x, v))f(t, x, v) dxdvdt

−
∫
R3

[∂xpf ]φ ∂vψ(t, x, v) dxdvdt = 0.

We study the relevance of this definition, regarding the fact that if it
contains simple physical solution of the form of a travelling wave.

Proposition 1 Let φ be a Lipschitz continuous path and f of the
form f(x, v, t) = g(x − σt, v − σ) = 1[x−σt,+∞[×[v1,+−σ,v2,+−σ](x, v) +
1[x−σt,+∞[×[v1,−−σ,v2,−−σ](x, v).
There exist ψ ∈ D(R3) such that∫

R3

(∂tψ(t, x, v) + v∂xψ(t, x, v)) f(t, x, v) dxdvdt (2)

−
∫
R3

[∂xpf ]φ ∂vψ(t, x, v) dxdvdt 6= 0. (3)

That is, for any φ, there exists a travelling wave for which the criterion
does not hold at the limit.

Limit with the Laplace transform
Another approach is the direct study of the regularized equation through a Laplace transform :

µf̂(x, v, µ)− f0(x, v) + v∂xf̂(x, v, µ)− 1

ε
p′
(x
ε

)
∂v f̂(x, v, µ) = 0.

The characteristic curves of v∂x− 1
εp
′ ( ·
ε

)
∂v split the domain into three regions, Uε1 , Uε2 and Uε3 . We

introduce the change of variables (x, v)→ (Sε(x, v), Hε(x, v)) with

Sε(x, v) = sgn(v)

∫ x

x0(x,v)

dy√
2Hε(x, v)− 2pε(y)

,

Hε(x, v) =
v2

2
+ p

(x
ε

)
.

−2 −1 1 2

−2

2 Uε1

Uε2

Uε3

x

v

In theses variables we have the following

Lemma 1 For all (x, v) with v 6= 0, we have

v∂xSε(x, v)− 1

ε
p
(x
ε

)
∂vSε(x, v) = 1, v∂x −

1

ε
p
( ·
ε

)
∂v = ∂S , ∂S(eµS f̂(S,H)) = eµSf0(S,H).

In the end, we obtain a representation formula for f using the inverse Laplace transform.
We look for jump relation for f across the shock.

Proposition 2 In U1, we have f(0+, v, t) = f0(−t
√
v2 + 2p+ − 2p−,

√
v2 + 2p+ − 2p−) and

f(0−, v, t) = f0(−tv, v).
In U2, we have f(0+, v, t) = f0(−t|v|, |v|), f(0−, v, t) = 0

So far we do not know how to write a simple jump relation for f which is independent of f0.

An averaged model
All those results motivate us to change the model, so that we can define
usual weak solutions. We propose the following system [1] :

∂t(α%) + ∇ · (α%u) = 0

∂t(α%u) + ∇ · (α%u⊗ u) + ∇p = m?∇p

∫
〈f〉dv +D?

∫
(v − u)fdv

∂t(α%e) + ∇ · (α%eu) + p(∂tα+ ∇ · (αu)) = D?

∫
|v − u|2fdv

∂tf + v ·∇xf + ∇v · (Γf) = 0

α = 1−m?

∫
〈f〉dv

m?Γ = −m?〈∇p〉 −D?(v − u)

(4)

with 〈·〉 defined by 〈f〉(x) =
∫
R
w(x− y)f(y)dy.

One has the entropy law

∂t(α%S) + ∇ · (α%Su) =
D?

T

∫
|v − u|2fdv ≥ 0.

Proposition 3 The system is conservative in total mass, total momentum
and total energy.

Proposition 4 ([3]) Under some boundedness assumption, and assuming
that

u ∈W 1,∞,

∫
fvdv∫
〈f〉dv

∈ L∞,

then the volume fraction stays positive for smooth solution.

Theorem 1 ([1]) The system is locally well posed in Sobolev spaces Hs

for small initial data on the particle distribution.

The convolution kernel
An example of appropriate an convolution kernel
w is given by the formula :

w(x) = 1S3(x).

r

p+p−
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